V N Gribov, one of the founders of modern particle physics, shaped our understanding of QCD as the microscopic dynamics of hadrons. This volume collects his papers on quark confinement, showing the road he followed to arrive at the theory and formulating the theory itself. It begins with papers providing a beautiful physical explanation of asymptotic freedom based on the phenomenon of antiscreening and demonstrating the inconsistency of the standard perturbative treatment of the gluon fields (Gribov copies, Gribov horizon). It continues with papers presenting the Gribov theory according to which confinement of colour is determined by the existence of practically massless quarks. The last two papers conclude Gribov's twenty-year-long study of the problem; QCD is formulated as a quantum field theory containing both perturbative and nonperturbative phenomena, and the confinement is based on the supercritical binding of light quarks.
This is an updated version of the book published in 1985. QCD-motivated, it gives a detailed description of hadron structure and soft interactions in the additive quark model, where hadrons are regarded as composite systems of dressed quarks. In the past decade it has become clear that nonperturbative QCD, responsible for soft hadronic processes, may differ rather drastically from perturbative QCD. The understanding of nonperturbative QCD requires a detailed investigation of the experiments and the theoretical approaches. Bearing this in mind, the book has been rewritten paying special attention to the interplay of soft hadronic collisions and the quark model. It is at the crossroads of these domains that peculiar features of strong QCD reveal themselves. The book discusses constituent quarks, diquarks, the massive effective gluons and the problem of scalar isoscalar mesons. The quark-gluonium classification of meson states is also given. Experimentally observed properties of hadrons are presented together with the corresponding theoretical interpretation in the framework of the composite hadron structure. The text includes a large theoretical part, which shows how to treat composite systems (including relativistic ones) with a technique based on spectral integration. This technique provides the possibility of handling hadrons as weakly bound systems of quarks and, at the same time, takes into account confinement. Attention is focused on the composite structure revealing itself in high energy hadron collisions. Fields of applicability of the additive quark model are discussed, as is colour screening in hadronic collisions at high and superhigh energies. Along with a detailed presentation of hadronOCohadron collisions, a description of hadronOConucleus collisions is given. Sample Chapter(s). Chapter 1: Introduction (1,047 KB). Contents: High Energy Hadron Interactions; Composite Systems; High Energy Interactions of Composite Systems; Hadron Zoology and Static Features of Hadrons; Binary Processes in the Quark Model; Multiparticle Production in the Quark Model: Hadron Collisions at Moderately High Energies; HadronOCoNucleus Collisions. Readership: Graduate students and researchers in particle and nuclear physics.
The necessity of describing three-nucleon and three-quark systems have led to a constant interest in the problem of three particles. The question of including relativistic effects appeared together with the consideration of the decay amplitude in the framework of the dispersion technique. The relativistic dispersion description of amplitudes always takes into account processes connected with the investigated reaction by the unitarity condition or by virtual transitions; in the case of three-particle processes they are, as a rule, those where other many-particle states and resonances are produced. The description of these interconnected reactions and ways of handling them is the main subject of the book.
This book is devoted to the investigation of the strongly interacting hadrons — to a quark model operating with effective color particles, constituent quarks, massive effective gluons and diquarks. The study of strong interactions based on effective constituent particles requires a solid ground of experimental data, which we now have at our disposal with the serious progress made in the investigation of hadrons, especially meson states.The present understanding of QCD applied to strong interactions can be distorted by prejudices. Therefore, the way followed by the quark model is to rely on the experiment and to restore the effective Hamiltonian on the basis of QCD on the one hand, and, on the other, of the spectral integral method.Baryon-baryon and antibaryon-baryon interactions are studied with the purpose of unambiguous applications of the written formulae to the interpretation of experimental data — to the observation of new meson and baryon resonances. The technique used is the spin-orbital momentum expansion of the amplitude. This method is our basic approach to the proper treatment of experimental data. The photon-induced reactions are also considered and the problem of form factors is discussed.
This is an updated version of the book published in 1985. QCD-motivated, it gives a detailed description of hadron structure and soft interactions in the additive quark model, where hadrons are regarded as composite systems of dressed quarks.In the past decade it has become clear that nonperturbative QCD, responsible for soft hadronic processes, may differ rather drastically from perturbative QCD. The understanding of nonperturbative QCD requires a detailed investigation of the experiments and the theoretical approaches. Bearing this in mind, the book has been rewritten paying special attention to the interplay of soft hadronic collisions and the quark model. It is at the crossroads of these domains that peculiar features of strong QCD reveal themselves.The book discusses constituent quarks, diquarks, the massive effective gluons and the problem of scalar isoscalar mesons. The quark-gluonium classification of meson states is also given. Experimentally observed properties of hadrons are presented together with the corresponding theoretical interpretation in the framework of the composite hadron structure.The text includes a large theoretical part, which shows how to treat composite systems (including relativistic ones) with a technique based on spectral integration. This technique provides the possibility of handling hadrons as weakly bound systems of quarks and, at the same time, takes into account confinement.Attention is focused on the composite structure revealing itself in high energy hadron collisions. Fields of applicability of the additive quark model are discussed, as is colour screening in hadronic collisions at high and superhigh energies. Along with a detailed presentation of hadron-hadron collisions, a description of hadron-nucleus collisions is given.
Quarks, Hadrons, and Strong Interactions : Proceedings of the Memorial Workshop Devoted to the 75th Birthday of V.N. Gribov, Budapest, Hungary, 22-24 May 2005
Quarks, Hadrons, and Strong Interactions : Proceedings of the Memorial Workshop Devoted to the 75th Birthday of V.N. Gribov, Budapest, Hungary, 22-24 May 2005
Vladimir Naumovich Gribov was one of the most outstanding theorists, a key figure in the creation of the modern elementary particle physics. His many discoveries are famous and well accepted by the physics community (Gribov-Regge theory of high energy hadron interactions, Gribov vacuum pole OCo Pomeron, Reggeon field theory, parton evolution equations, neutrino oscillations, Gribov copies in non-Abelian gauge field theories, etc.); Some of his ideas look unacceptable and strange at the first glance. Even at the second glance. Nowadays, under the weight of new theoretical developments and experimental results, his ideas are receiving the recognition they deserve. The Gribov Memorial Workshop, organized on his 75th birthday in Budapest, Hungary in 2005, clearly demonstrated the wealth and fertilization force of his ideas. Close colleagues, younger followers, world experts of the quark-hadron world have gathered together to display new angles of the Gribov heritage. And to remember the personality of a great man. This book collects the talks presented at, and contributed to, the Gribov-75 Memorial Workshop. Contents: QCD and Hadrons at High Energies: Hidden QCD Scales and Diquark Correlations (A Vainshtein); Non-Perturbative YangOCoMills from Supersymmetry and Strings, or, in the Jungles of Strong Coupling (M Shifman); Multiple Interactions and Saturation in High Energy Collisions (G Gustafson); From Quantum Black Holes to Relativistic Heavy Ions (D Kharzeev); Progress in Lattice Studies, Hadron Spectrum and Color Confinement: Exact Chiral Symmetry in Lattice QCD (F Niedermayer); The Effective Bosonic String Action in Quantum Chromodynamics (J Kuti); General Field Theory, Gravity and Macro-World: Supermagnets and Sigma Models (A M Polyakov); PhotonOCoNeutrino Interaction or Optical Activity of Intergalactic Space (V Novikov); Quantized Black Holes, Their Spectrum and Radiation (I B Khriplovich); Many Faces of Dimensional Reduction (A T Filippov); and other papers. Readership: Physicists, researchers, and graduate students in particle and high energy physics.
UNDER THE SPELL OF THE GAUGE PRINCIPLE ? by G 't HooftThe University of Bologna and its Academy of Sciences, in collaboration with the Italian National Institute for Nuclear Physics and the Italian Physical Society, celebrated in 1998 the bicentenary of a great pioneer in the field of electric phenomena ? Luigi Galvani, the father of macroelectricity. During these two centuries, the physics of electric phenomena has given rise first to the Maxwell equations, then to quantum electrodynamics, and finally to the synthesis of all reproducible phenomena, the ?Standard Model?. A cornerstone of the Standard Model is quantum chromodynamics (QCD), which describes the interaction between quarks and gluons in the innermost part of the structure of matter.The discovery of QCD will be recalled in the future as one of the greatest achievements of mankind. Many physicists, the world over, have contributed to its creation on both the experimental and the theoretical front. Professor Antonino Zichichi has played an important role in this scientific venture, as documented by his works which are reproduced in this invaluable volume.One of the founders of European physics, Professor Victor F Weisskopf, contributes with his memories of the time when QCD had many problems. This volume owes its existence to a founding father of QCD, Professor Vladimir N Gribov, whose sudden demise prevented him from directly contributing to its final edition. Two world leaders in subnuclear theoretical physics, Professors Gerardus 't Hooft and Gabriele Veneziano, illustrate the significance of the contributions of Antonino Zichichi in QCD.
Vladimir Naumovich Gribov was one of the most outstanding theoretical physicists, a key figure in the development of modern elementary particle physics. His insights into the physics of quantum anomalies and the origin of classical solutions (instantons), the notion of parton systems and their evolution in soft and hard hadron interactions, the first theory of neutrino oscillations and conceptual problems of quantization of non-Abelian fields uncovered by him, have left a lasting impact on the theoretical physics of the 21st century. Gribov-80 the fourth in a series of memorial workshops for V N Gribov was organized on the occasion of his 80th birthday in May 2010, at the Abdus Salam International Centre for Theoretical Physics. The workshop paid tribute to Gribov's great achievements and brought close colleagues, younger researchers and leading experts together to display the new angles of the Gribov heritage at the new energy frontier opened up by the Large Hadron Collider. The book is a collection of the presentations made at the workshop.
Isotope Geochemistry: The Origin and Formation of Manganese Rocks and Ores is a comprehensive reference on global manganese deposits, including their origins and formations. Manganese is both a significant industrial chemical, critical for steel-making, and a strategic mineral, occurring in abundance only in certain countries. Furthermore, it is used effectively in CO2 sequestration, helping to mitigate greenhouse gas emission challenges around the world. For these reasons, exploration for manganese is very active, yet access to the primary academic literature can be a challenge, especially in field operations. Isotope Geochemistry brings this material together in a single source, making it the ideal all-in-one reference that presents the supporting data, analytics, and interpretation from known manganese deposits. This book is an essential resource for researchers and scientists in multiple fields, including exploration and economic geologists, mineralogists, geochemists, and environmental scientists alike. - Features coverage of the formation, origins, and deposits of manganese rocks and ores globally, arming geoscientists with a thorough reference on the subject - Includes 170 figures and illustrations that visually capture key concepts - Includes elusive data with supporting analysis and interpretation of deposits in Russia, one of the most robust geographic locations in the world for manganese rock and ore research
This book mathematically derives the theory underlying the Belinski-Khalatnikov-Lifshitz conjecture on the general solution of the Einstein equations with a cosmological singularity.
This work provides a unique introduction to the theory of complex angular momenta, based on the methods of field theory. It comprises an English translation of a lecture course given by Vladimir Gribov in 1969. Besides their historical significance, these lectures contain material highly relevant to research today and likely to form the basis for future developments in the subject.
A chance to read about the Fall of the Soviet Empire told through the eyes of the last surviving high-ranking member of the Soviet government. Dr. Vladimir Shcherbakov, the Last Chairman of the USSR State Planning Committee tells his account of the historic last days of the Soviet Union after a 68-year of global dominance and the 45-year long Cold War. This is a rare opportunity to take a close, behind the curtains look at the historical event that changed the global dynamics for the 21st century.
V N Gribov, one of the founders of modern particle physics, shaped our understanding of QCD as the microscopic dynamics of hadrons. This volume collects his papers on quark confinement, showing the road he followed to arrive at the theory and formulating the theory itself. It begins with papers providing a beautiful physical explanation of asymptotic freedom based on the phenomenon of antiscreening and demonstrating the inconsistency of the standard perturbative treatment of the gluon fields (Gribov copies, Gribov horizon). It continues with papers presenting the Gribov theory according to which confinement of colour is determined by the existence of practically massless quarks. The last two papers conclude Gribov''s twenty-year-long study of the problem; QCD is formulated as a quantum field theory containing both perturbative and nonperturbative phenomena, and the confinement is based on the supercritical binding of light quarks. Contents: Quantization of Non-Abelian Gauge Theories (V N Gribov); Instability of Non-Abelian Gauge Theories and Impossibility of Choice of Coulomb Gauge (V N Gribov); Local Confinement of Charge in Massless QED (V N Gribov); Outlook (V N Gribov); Possible Solution of the Problem of Quark Confinement (V N Gribov); Orsay Lectures on Confinement (I) (V N Gribov); Orsay Lectures on Confinement (II) (V N Gribov); Orsay Lectures on Confinement (III) (V N Gribov); The Theory of Quark Confinement (V N Gribov); QCD at Large and Short Distances (V N Gribov); and other papers. Readership: Graduate students, and researchers in quantum field theory and particle physics.
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.
Based on lectures given by the highly original and distinguished physicist V.N. Gribov, this book provides an accessible introduction to quantum electrodynamics. It presents the theory of quantum electrodynamics in the shortest and clearest way for applied use. A distinctive feature of Gribov's approach is the systematic use of the Green function method, which allows a straightforward generalization to the cases of strong and weak interactions. The book starts with an introduction that uses the basics of quantum mechanics to gently introduce the reader into the world of propagation functions and particle interactions. The following chapter then focuses on spin 1/2 particles. The text goes on to discuss symmetries, the CPT theorem, causality, and unitarity followed by a detailed presentation of renormalization theory. A final chapter looks at difficulties with the theory and possible routes to their resolution. This book should become an indispensable part of any physical library, graduate students will value it as a helpful companion and experts will find in it many original ideas and deep insights.
A rigorous introduction to the theory of complex angular momenta, based on the methods of field theory. This is an English translation of the famous lecture course given by Vladimir Gribov in 1969. Besides their historical significance, these lectures are highly relevant to modern research in theoretical physics.
The University of Bologna and its Academy of Sciences, in collaboration with the Italian National Institute for Nuclear Physics and the Italian Physical Society, celebrated in 1998 the bicentenary of a great pioneer in the field of electric phenomena - Luigi Galvani, the father of macroelectricity. During these two centuries, the physics of electric phenomena has given rise first to the Maxwell equations, then to quantum electrodynamics, and finally to the synthesis of all reproducible phenomena, the Standard Model. A cornerstone of the Standard Model is quantum chromodynamics (QCD), which describes the interaction between quarks and gluons in the innermost part of the structure of matter. The discovery of QCD will be recalled in the future as one of the greatest achievements of mankind. Many physicists, the world over, have contributed to its creation on both the experimental and the theoretical front. Professor Antonino Zichichi has played an important role in this scientific venture, as documented by his works which are reproduced in this valuable volume. One of the founders of European physics, Professor Victor F. Weisskopf, contributes with his memories of the time when QCD had many problems. This volume owes its existence to a founding father of QCD, Professor Vladimir N. Gribov, whose sudden demise prevented him from directly contributing to its final edition. Two world leaders in subnuclear theoretical physics, Professors Gerardus 't Hooft and Gabriele Veneziano, illustrate the significance of the contributions of Antonino Zichichi in QCD.
This book continues the presentation of the development of society from the point of view of the logic of rational development, but already close to reality, i.e. those structures that already exist in society and for a sufficiently long time have undergone some revision, moreover, their regrouping is proposed, and a new view of other previously unshakable foundations of society is set out.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.