Quantum Neural Computation is a graduate–level monographic textbook. It presents a comprehensive introduction, both non-technical and technical, into modern quantum neural computation, the science behind the fiction movie Stealth. Classical computing systems perform classical computations (i.e., Boolean operations, such as AND, OR, NOT gates) using devices that can be described classically (e.g., MOSFETs). On the other hand, quantum computing systems perform classical computations using quantum devices (quantum dots), that is devices that can be described only using quantum mechanics. Any information transfer between such computing systems involves a state measurement. This book describes this information transfer at the edge of classical and quantum chaos and turbulence, where mysterious quantum-mechanical linearity meets even more mysterious brain’s nonlinear complexity, in order to perform a super–high–speed and error–free computations. This monograph describes a crossroad between quantum field theory, brain science and computational intelligence.
This comprehensive volume is a graduate-level text in human biodynamics, written in the unified categorical language of modern differential geometry and topology. Combining mathematics, physics and robotics with human physiology, this is the first book that describes all levels of human biodynamics, from musculo-skeletal mechanics to the higher brain functions. The book develops and uses a variety of research methods, ranging from chaos theory and Haken's synergetics, through quantum mechanics, to nonlinear control and artificial intelligence, to provide the means to understand, predict and control the behavior of human-like systems in their full neuro-musculo-skeletal complexity. The applications of this unique scientific methodology range from prediction of human neuro-musculo-skeletal injuries to brain-like control of humanoid robots.
Human-Like Biomechanics is a comprehensive introduction into modern geometrical methods to be used as a unified research approach in two apparently separate and rapidly growing fields: mathematical biomechanics and humanoid robotics. The book contains six Chapters and an Appendix. The first Chapter is an Introduction, giving a brief review of mathematical techniques to be used in the text. The second Chapter develops geometrical basis of human-like biomechanics, while the third Chapter develops its mechanical basis, mainly from generalized Lagrangian and Hamiltonian perspective. The fourth Chapter develops topology of human-like biomechanics, while the fifth Chapter reviews related nonlinear control techniques. The sixth Chapter develops covariant biophysics of electro-muscular stimulation. The Appendix consists of two parts: classical muscular mechanics and modern path integral methods, which are both used frequently in the main text. The whole book is based on the authors’ own research papers in human-like biomechanics.
Geometrical Dynamics of Complex Systems is a graduate?level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By?complexsystems?,inthis book are meant high?dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds:engineering,physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi?input multi?output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular ?soft complexity philosophy?, we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high?dimensional nonlinear systems and processes of ?real life? can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well?known that linear systems, which are completely predictable and controllable by de?nition ? live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.
This book represents a comprehensive introduction into both conceptual and rigorous brain and cognition modelling. It is devoted to understanding, prediction and control of the fundamental mechanisms of brain functioning. The reader will be provided with a scientific tool enabling him or her to perform a competitive research in brain and cognition modelling. This is a graduate–level monographic textbook.
This graduate-level monographic textbook treats applied differential geometry from a modern scientific perspective. Co-authored by the originator of the world's leading human motion simulator — “Human Biodynamics Engine”, a complex, 264-DOF bio-mechanical system, modeled by differential-geometric tools — this is the first book that combines modern differential geometry with a wide spectrum of applications, from modern mechanics and physics, via nonlinear control, to biology and human sciences. The book is designed for a two-semester course, which gives mathematicians a variety of applications for their theory and physicists, as well as other scientists and engineers, a strong theory underlying their models.
New Trends in Control Theory is a graduate-level monographic textbook. It is a contemporary overview of modern trends in control theory. The introductory chapter gives the geometrical and quantum background, which is a necessary minimum for comprehensive reading of the book. The second chapter gives the basics of classical control theory, both linear and nonlinear. The third chapter shows the key role that Euclidean group of rigid motions plays in modern robotics and biomechanics. The fourth chapter gives an overview of modern quantum control, from both theoretical and measurement perspectives. The fifth chapter presents modern control and synchronization methods in complex systems and human crowds. The appendix provides the rest of the background material complementary to the introductory chapter. The book is designed as a one-semester course for engineers, applied mathematicians, computer scientists and physicists, both in industry and academia. It includes a most relevant bibliography on the subject and detailed index.
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
This graduate–level textbook is devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincaré’s 3-body problem, high-tech Josephson junctions, and more.
This is a unique 21st-century monograph that reveals a basic, yet deep understanding of the universe, as well as the human mind and body ?? all from the perspective of quantum mechanics and quantum field theory.This book starts with both non-mathematical and mathematical preliminaries. It presents the basics of both non-relativistic and relativistic quantum mechanics, and introduces Feynman path integrals and their application to quantum fields and string theory, as well as some non-quantum applications. It then describes the quantum universe in the form of loop quantum gravity and quantum cosmology. Lastly, the book turns to the human body and mind, applying quantum theory to electro-muscular stimulation and consciousness. It can be used as a graduate (or advanced undergraduate) textbook for a two-semester course in quantum physics and its modern applications. Some parts of the book can also be used by engineers, biologists, psychologists and computer scientists, as well as applied mathematicians, both in industry and academia.
The book Complexity and Control: Towards a Rigorous Behavioral Theory of Complex Dynamical Systems is a graduate-level monographic textbook, intended to be a novel and rigorous contribution to modern Complexity Theory.This book contains 11 chapters and is designed as a one-semester course for engineers, applied and pure mathematicians, theoretical and experimental physicists, computer and economic scientists, theoretical chemists and biologists, as well as all mathematically educated scientists and students, both in industry and academia, interested in predicting and controlling complex dynamical systems of arbitrary nature.
This is a graduate–level monographic textbook in the field of Computational Intelligence. It presents a modern dynamical theory of the computational mind, combining cognitive psychology, artificial and computational intelligence, and chaos theory with quantum consciousness and computation. The book introduces to human and computational mind, comparing and contrasting main themes of cognitive psychology, artificial and computational intelligence.
Mathematics of Autonomy provides solid mathematical foundations for building useful Autonomous Systems. It clarifies what makes a system autonomous rather than simply automated, and reveals the inherent limitations of systems currently incorrectly labeled as autonomous in reference to the specific and strong uncertainty that characterizes the environments they operate in. Such complex real-world environments demand truly autonomous solutions to provide the flexibility and robustness needed to operate well within them.This volume embraces hybrid solutions to demonstrate extending the classes of uncertainty autonomous systems can handle. In particular, it combines physical-autonomy (robots), cyber-autonomy (agents) and cognitive-autonomy (cyber and embodied cognition) to produce a rigorous subset of trusted autonomy: Cyber-Physical-Cognitive autonomy (CPC-autonomy).The body of the book alternates between underlying theory and applications of CPC-autonomy including 'Autonomous Supervision of a Swarm of Robots' , 'Using Wind Turbulence against a Swarm of UAVs' and 'Unique Super-Dynamics for All Kinds of Robots (UAVs, UGVs, UUVs and USVs)' to illustrate how to effectively construct Autonomous Systems using this model. It avoids the wishful thinking that characterizes much discussion related to autonomy, discussing the hard limits and challenges of real autonomous systems. In so doing, it clarifies where more work is needed, and also provides a rigorous set of tools to tackle some of the problem space.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.