The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.
Systems of strongly correlated electrons are at the heart of recent developments in condensed matter theory. They have applications to phenomena like high-c superconductivity and the fractional quantum hall effect. Analytical solutions to such models, though mainly limited to one spatial dimension, provide a complete and unambiguous picture of the dynamics involved. This volume is devoted to such solutions obtained using the Bethe Ansatz, and concentrates on the most important of such models, the Hubbard model. The reprints are complemented by reviews at the start of each chapter and an extensive bibliography.
This book presents an account of the exact solution of the Hubbard model in one dimension. The early chapters develop a self-contained introduction to Bethe's ansatz and its application to the one-dimensional Hubbard model. The later chapters address more advanced topics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.