Proportional-integral-derivative (PID) controllers are extensively used for efficient industrial operations. Autotuning such controllers is required for efficient operation. There are two ways of relay autotuning cascade control systems - simultaneous tuning and sequential tuning. This book discusses incorporation of higher order harmonics of relay autotuning for a single loop controller and cascade control systems to get accurate values of controller ultimate gain. It provides a simple method of designing P/PI controllers for series and parallel cascade control schemes. The authors also focus on estimation of model parameters of unstable FOPTD systems, stable SOPTD and unstable SOPTDZ systems using a single relay feedback test. The methodology and final results explained in this book are useful in tuning controllers. The text would be of use to graduate students and researchers for further studies in this area.
Proportional-integral-derivative (PID) controllers are extensively used for efficient industrial operations. Autotuning such controllers is required for efficient operation. There are two ways of relay autotuning cascade control systems – simultaneous tuning and sequential tuning. This book discusses incorporation of higher order harmonics of relay autotuning for a single loop controller and cascade control systems to get accurate values of controller ultimate gain. It provides a simple method of designing P/PI controllers for series and parallel cascade control schemes. The authors also focus on estimation of model parameters of unstable FOPTD systems, stable SOPTD and unstable SOPTDZ systems using a single relay feedback test. The methodology and final results explained in this book are useful in tuning controllers. The text would be of use to graduate students and researchers for further studies in this area.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.