The Thirty-First International Workshop on Condensed Matter Theories (CMT31) held in Bangkok focused on the many roles played by ab initio theory, modeling, and high-performance computing in condensed matter and materials science, providing a forum for the discussion of recent advances and exploration of new problems. Fifty-six invited papers were presented, of which 38 appear as chapters in this volume. Reports of recent results generated lively debate on two-dimensional electron systems, the metal-insulator transition, dilute magnetic semiconductors, effects of disorder, magnetoresistence phenomena, ferromagnetic stripes, quantum Hall systems, strongly correlated Fermi systems, superconductivity, dilute fermionic and bosonic gases, nanostructured materials, plasma instabilities, quantum fluid mixtures, and helium in reduced geometries.
This book is devoted to the broad subject of flavor physics, embracing the question of what distinguishes one type of elementary particles from another. The articles range from the forefront of formal theory (treating the physics of extra dimensions) to details of particle detectors. Although special emphasis is placed on the physics of kaons, charmed and beauty particles, top quarks, and neutrinos, the articles also dealing with electroweak physics, quantum chromodynamics, supersymmetry, and dynamical electroweak symmetry breaking. Violations of fundamental symmetries such as time reversal invariance are discussed in the context of neutral kaons, beauty particles, electric dipole moments, and parity violation in atoms. The physics of the Cabibbo-Kobayashi-Maskawa matrix and of quark masses are described in some detail, both from the standpoint of present and future experimental knowledge and from a more fundamental viewpoint, where physicists are still searching for the correct theory
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.