This book introduces the fundamental concepts of modern digital image processing. It aims to help the students, scientists, and practitioners to understand the concepts through clear explanations, illustrations and examples. The discussion of the general concepts is supplemented with examples from applications and ready-to-use implementations of concepts in MATLAB®. Program code of some important concepts in programming language 'C' is provided. To explain the concepts, MATLAB® functions are used throughout the book. MATLAB® Version 9.3 (R2017b), Image Acquisition Toolbox Version 5.3 (R2017b), Image Processing Toolbox, Version 10.1 (R2017b) have been used to create the book material. Meant for students and practicing engineers, this book provides a clear, comprehensive and up-to-date introduction to Digital Image Processing in a pragmatic manner.
The book describes several techniques used to bridge the semantic gap and reflects on recent advancements in content-based image retrieval (CBIR). It presents insights into and the theoretical foundation of various essential concepts related to image searches, together with examples of natural and texture image types. The book discusses key challenges and research topics in the context of image retrieval, and provides descriptions of various image databases used in research studies. The area of image retrieval, and especially content-based image retrieval (CBIR), is a very exciting one, both for research and for commercial applications. The book explains the low-level features that can be extracted from an image (such as color, texture, shape) and several techniques used to successfully bridge the semantic gap in image retrieval, making it a valuable resource for students and researchers interested in the area of CBIR alike.
This book describes various methods and recent advances in predictive computing and information security. It highlights various predictive application scenarios to discuss these breakthroughs in real-world settings. Further, it addresses state-of-art techniques and the design, development and innovative use of technologies for enhancing predictive computing and information security. Coverage also includes the frameworks for eTransportation and eHealth, security techniques, and algorithms for predictive computing and information security based on Internet-of-Things and Cloud computing. As such, the book offers a valuable resource for graduate students and researchers interested in exploring predictive modeling techniques and architectures to solve information security, privacy and protection issues in future communication.
This new edition provides clinicians and trainees with the latest information on drugs in anaesthesiology. Presented in tabular format, each section covers a different drug category, explaining and comparing the properties and characteristics of drugs within that group. The second edition features and new chapter on pharmacological terms, and each chapter includes references for further reading. The comprehensive text is further enhanced by clinical images and figures. Key points Fully revised, new edition providing latest information on drug in anaesthesiology Presented in tabular format to allow easy comparison of similar drugs Second edition features a new chapter on pharmacological terms Previous edition (9788184484069) published in 2008
This book introduces the fundamental concepts of modern digital image processing. It aims to help the students, scientists, and practitioners to understand the concepts through clear explanations, illustrations and examples. The discussion of the general concepts is supplemented with examples from applications and ready-to-use implementations of concepts in MATLAB®. Program code of some important concepts in programming language 'C' is provided. To explain the concepts, MATLAB® functions are used throughout the book. MATLAB® Version 9.3 (R2017b), Image Acquisition Toolbox Version 5.3 (R2017b), Image Processing Toolbox, Version 10.1 (R2017b) have been used to create the book material. Meant for students and practicing engineers, this book provides a clear, comprehensive and up-to-date introduction to Digital Image Processing in a pragmatic manner.
The book describes several techniques used to bridge the semantic gap and reflects on recent advancements in content-based image retrieval (CBIR). It presents insights into and the theoretical foundation of various essential concepts related to image searches, together with examples of natural and texture image types. The book discusses key challenges and research topics in the context of image retrieval, and provides descriptions of various image databases used in research studies. The area of image retrieval, and especially content-based image retrieval (CBIR), is a very exciting one, both for research and for commercial applications. The book explains the low-level features that can be extracted from an image (such as color, texture, shape) and several techniques used to successfully bridge the semantic gap in image retrieval, making it a valuable resource for students and researchers interested in the area of CBIR alike.
This book describes various methods and recent advances in predictive computing and information security. It highlights various predictive application scenarios to discuss these breakthroughs in real-world settings. Further, it addresses state-of-art techniques and the design, development and innovative use of technologies for enhancing predictive computing and information security. Coverage also includes the frameworks for eTransportation and eHealth, security techniques, and algorithms for predictive computing and information security based on Internet-of-Things and Cloud computing. As such, the book offers a valuable resource for graduate students and researchers interested in exploring predictive modeling techniques and architectures to solve information security, privacy and protection issues in future communication.
In an era marked by rapid technological advancements and the increasing integration of artificial intelligence (AI) into various sectors, the intersection of AI technologies with service marketing stands as a pivotal frontier. It is essential to explore the intricate nexus between AI technologies and service marketing strategies. Integrating AI-Driven Technologies Into Service Marketing elucidates the transformative impact of AI on key facets of service marketing, ranging from customer engagement and relationship management to market segmentation and product customization. It underscores the imperative for stakeholders in emerging economies to harness the power of AI technologies in crafting innovative and adaptive service marketing strategies. The book navigates the complexities of AI adoption while offering pragmatic recommendations for fostering responsible and inclusive AI-driven service marketing ecosystems. Covering topics such as customer engagement, influencer marketing, and sentiment analysis, this book is an excellent resource for scholars, researchers, educators, business professionals, managers, academicians, postgraduate students, and more.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.