Unlike traditional embedded systems references, this book skips routine things to focus on programming microcontrollers, specifically MCS-51 family in ‘C’ using Keil IDE. The book presents seventeen case studies plus many basic programs organized around on-chip resources. This "learn-through-doing" approach appeals to busy designers. Mastering basic modules and working hands-on with the projects gives readers the basic building blocks for most 8051 programs. Whether you are a student using MCS-51 microcontrollers for project work or an embedded systems programmer, this book will kick-start your practical understanding of the most popular microcontroller, bridging the gap between microcontroller hardware experts and C programmers.
With the rapid advances in technology, the conventional academic and research departments of Electronics engineering, Electrical Engineering, Computer Science, Instrumentation Engineering over the globe are forced to come together and update their curriculum with few common interdisciplinary courses in order to come out with the engineers and researchers with muli-dimensional capabilities. The gr- ing perception of the ‘Hardware becoming Soft’ and ‘Software becoming Hard’ with the emergence of the FPGAs has made its impact on both the hardware and software professionals to change their mindset of working in narrow domains. An interdisciplinary field where ‘Hardware meets the Software’ for undertaking se- ingly unfeasible tasks is System on Chip (SoC) which has become the basic pl- form of modern electronic appliances. If it wasn’t for SoCs, we wouldn’t be driving our car with foresight of the traffic congestion before hand using GPS. Without the omnipresence of the SoCs in our every walks of life, the society is wouldn’t have evidenced the rich benefits of the convergence of the technologies such as audio, video, mobile, IPTV just to name a few. The growing expectations of the consumers have placed the field of SoC design at the heart of at variance trends. On one hand there are challenges owing to design complexities with the emergence of the new processors, RTOS, software protocol stacks, buses, while the brutal forces of deep submicron effects such as crosstalk, electromigration, timing closures are challe- ing the design metrics.
Second in the series, Practical Aspects of Embedded System Design using Microcontrollers emphasizes the same philosophy of “Learning by Doing” and “Hands on Approach” with the application oriented case studies developed around the PIC16F877 and AT 89S52, today’s most popular microcontrollers. Readers with an academic and theoretical understanding of embedded microcontroller systems are introduced to the practical and industry oriented Embedded System design. When kick starting a project in the laboratory a reader will be able to benefit experimenting with the ready made designs and ‘C’ programs. One can also go about carving a big dream project by treating the designs and programs presented in this book as building blocks. Practical Aspects of Embedded System Design using Microcontrollers is yet another valuable addition and guides the developers to achieve shorter product development times with the use of microcontrollers in the days of increased software complexity. Going through the text and experimenting with the programs in a laboratory will definitely empower the potential reader, having more or less programming or electronics experience, to build embedded systems using microcontrollers around the home, office, store, etc. Practical Aspects of Embedded System Design using Microcontrollers will serve as a good reference for the academic community as well as industry professionals and overcome the fear of the newbies in this field of immense global importance.
With the rapid advances in technology, the conventional academic and research departments of Electronics engineering, Electrical Engineering, Computer Science, Instrumentation Engineering over the globe are forced to come together and update their curriculum with few common interdisciplinary courses in order to come out with the engineers and researchers with muli-dimensional capabilities. The gr- ing perception of the ‘Hardware becoming Soft’ and ‘Software becoming Hard’ with the emergence of the FPGAs has made its impact on both the hardware and software professionals to change their mindset of working in narrow domains. An interdisciplinary field where ‘Hardware meets the Software’ for undertaking se- ingly unfeasible tasks is System on Chip (SoC) which has become the basic pl- form of modern electronic appliances. If it wasn’t for SoCs, we wouldn’t be driving our car with foresight of the traffic congestion before hand using GPS. Without the omnipresence of the SoCs in our every walks of life, the society is wouldn’t have evidenced the rich benefits of the convergence of the technologies such as audio, video, mobile, IPTV just to name a few. The growing expectations of the consumers have placed the field of SoC design at the heart of at variance trends. On one hand there are challenges owing to design complexities with the emergence of the new processors, RTOS, software protocol stacks, buses, while the brutal forces of deep submicron effects such as crosstalk, electromigration, timing closures are challe- ing the design metrics.
Unlike traditional embedded systems references, this book skips routine things to focus on programming microcontrollers, specifically MCS-51 family in ‘C’ using Keil IDE. The book presents seventeen case studies plus many basic programs organized around on-chip resources. This "learn-through-doing" approach appeals to busy designers. Mastering basic modules and working hands-on with the projects gives readers the basic building blocks for most 8051 programs. Whether you are a student using MCS-51 microcontrollers for project work or an embedded systems programmer, this book will kick-start your practical understanding of the most popular microcontroller, bridging the gap between microcontroller hardware experts and C programmers.
Second in the series, Practical Aspects of Embedded System Design using Microcontrollers emphasizes the same philosophy of “Learning by Doing” and “Hands on Approach” with the application oriented case studies developed around the PIC16F877 and AT 89S52, today’s most popular microcontrollers. Readers with an academic and theoretical understanding of embedded microcontroller systems are introduced to the practical and industry oriented Embedded System design. When kick starting a project in the laboratory a reader will be able to benefit experimenting with the ready made designs and ‘C’ programs. One can also go about carving a big dream project by treating the designs and programs presented in this book as building blocks. Practical Aspects of Embedded System Design using Microcontrollers is yet another valuable addition and guides the developers to achieve shorter product development times with the use of microcontrollers in the days of increased software complexity. Going through the text and experimenting with the programs in a laboratory will definitely empower the potential reader, having more or less programming or electronics experience, to build embedded systems using microcontrollers around the home, office, store, etc. Practical Aspects of Embedded System Design using Microcontrollers will serve as a good reference for the academic community as well as industry professionals and overcome the fear of the newbies in this field of immense global importance.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.