Optimal Audio and Video Reproduction at Home is a comprehensive guide that will help every reader set up a modern audio-video system in a small room such as a home theater or studio control room. Verdult covers everything the reader needs to know to optimize the reproduction of multichannel audio and high-resolution video. The book provides concrete advice on equipment setup, display calibration, loudspeaker positioning, room acoustics, and much more. Detailed, easy-to-grasp explanations of the underlying principles ensure the reader will make the right choices, find alternatives, and separate the rigid from the more flexible requirements to achieve the best possible results.
Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.
Optimal Audio and Video Reproduction at Home is a comprehensive guide that will help every reader set up a modern audio-video system in a small room such as a home theater or studio control room. Verdult covers everything the reader needs to know to optimize the reproduction of multichannel audio and high-resolution video. The book provides concrete advice on equipment setup, display calibration, loudspeaker positioning, room acoustics, and much more. Detailed, easy-to-grasp explanations of the underlying principles ensure the reader will make the right choices, find alternatives, and separate the rigid from the more flexible requirements to achieve the best possible results.
Separate signals from noise with this valuable introduction to signal processing by applied decomposition The decomposition of complex signals into their sub-signals or individual components is a crucial tool in signal processing. It allows each component of a signal to be analyzed individually and enables the signal to be isolated from noise and processed in full. Decomposition processes have not always been widely adopted due to the difficult underlying mathematics and complex applications. This text simplifies these obstacles. Signal Processing: An Applied Decomposition Approach demystifies these tools from a model-based perspective. This offers a mathematically informed, “step-by-step” analysis of the process by breaking down a composite signal/system into its constituent parts, while introducing both fundamental concepts and advanced applications. This comprehensive approach addresses each of the major decomposition techniques, making it an indispensable addition to any library specializing in signal processing. Signal Processing readers will find: Signal decomposition techniques developed from the data-based, spectral-based and model-based perspectives incorporate: statistical approaches (PCA, ICA, Singular Spectrum); spectral approaches (MTM, PHD, MUSIC); and model-based approaches (EXP, LATTICE, SSP) In depth discussion of topics includes signal/system estimation and decomposition, time domain and frequency domain techniques, systems theory, modal decompositions, applications and many more Numerous figures, examples, and tables illustrating key concepts and algorithms are developed throughout the text Includes problem sets, case studies, real-world applications as well as MATLAB notes highlighting applicable commands Signal Processing is ideal for engineering and scientific professionals, as well as graduate students seeking a focused text on signal/system decomposition with performance metrics and real-world applications.
Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.