The purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literature, are for the first time presented here in a self-contained fashion. Contents: Weak convergence of stochastic processes Weak convergence in metric spaces Weak convergence on C[0, 1] and D[0,∞) Central limit theorem for semi-martingales and applications Central limit theorems for dependent random variables Empirical process Bibliography
The first book to examine weakly stationary random fields and their connections with invariant subspaces (an area associated with functional analysis). It reviews current literature, presents central issues and most important results within the area. For advanced Ph.D. students, researchers, especially those conducting research on Gaussian theory.
Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).The book begins with preliminary results on covariance and associated RKHS
Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integration theory, existence and uniqueness results and stability theory. The results will be of particular interest to natural scientists and the finance community. Readers should ideally be familiar with stochastic processes and probability theory in general, as well as functional analysis and in particular the theory of operator semigroups.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.