This book considers computer vision to be an integral part of the artificial intelligence system. The core of the book is an analysis of possible approaches to the creation of artificial vision systems, which simulate human visual perception. Much attention is paid to the latest achievements in visual psychology and physiology, the description of the functional and structural organization of the human perception mechanism, the peculiarities of artistic perception and the expression of reality. Computer vision models based on these data are investigated. They include the processes of external data analysis, internal environmental model synthesis, and the generating of behavioristic responses based on external and internal models comparison. Computer vision system evolution resulting from environmental effects is also considered. A unique feature of this book is the authors' use of black and white, and colour prints of traditional and contemporary Russian art to illustrate their principal theses. In doing so, they introduce the reader to a particularly Russian view of the world.
This book explores new principles of Self-Initiating Volume Discharge for creating high-energy non-chain HF(DF) lasers, as well as the creation of highly efficient lasers with output energy and radiation power in the spectral region of 2.6–5 μm. Today, sources of high-power lasing in this spectral region are in demand in various fields of science and technology including remote sensing of the atmosphere, medicine, biological imaging, precision machining and other special applications. These applications require efficient laser sources with high pulse energy, pulsed and average power, which makes the development of physical fundamentals of high-power laser creation and laser complexes of crucial importance. High-Energy Ecologically Safe HF/DF Lasers: Physics of Self-Initiated Volume Discharge-Based HF/DF Lasers examines the conditions of formation of SSVD, gas composition and the mode of energy input into the gas on the efficiency and radiation energy of non-chain HF(DF) lasers. Key Features: Shares research results on SSVD in mixtures of non-chain HF(DF) lasers Studies the stability and dynamics of the development of SSVD Discusses the effect of the gas composition and geometry of the discharge gap (DG) on its characteristics Proposes recommendations for gas composition and for the method of obtaining SSVD in non-chain HF(DF) lasers Develops simple and reliable wide-aperture non-chain HF(DF) lasers and investigates their characteristics Investigates the possibilities of expanding the lasing spectrum of non-chain HF(DF) lasers
This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that facilitates in-car connectivity while on the move. An essential guide for technicians working in a fast-developing field, this new volume will be warmly welcomed as a powerful aid in their endeavors.
First Published in 1963, The Kremlin presents the story of a gigantic citadel, of its grandeur and its horrors, of its masters, famous and infamous, and of the scenes, both splendid and terrible, which its stones have witnessed since the Kremlin’s foundation. The Kremlin has for centuries been the nerve-centre of Russian history. Everything has had its origins in its precincts. The history of Russia from the twelfth century, with a brief interval during which power was transferred to Petrograd, is inextricably bound up with its development. It was there that the czars were crowned and buried and on many occasions, it was the scene of their assassination. Everything was nurtured there: religion, dreams of power, absolutism, favoritism, cruel repression, and sheer insanity. But through triumphs, setbacks and tragic period of chaos, the rulers, whatever their names, have pursued the same policy. This fascinating history of the Kremlin is a must read for scholars and researchers of Russian history and Russian politics.
The steady evolution of wireless communication technologies continues to pave the way for the implementation of innovative services and devices in modern vehicles. These include analog and digital audio broadcasting radio, satellite radio, GPS, cell phones, and short range communication devices. Such applications require the use multiple antennas operating in different frequency ranges. Automotive Antenna Design and Applications thoroughly examines traditional and new advanced automotive antennas, including the principles, designs, and techniques used to reduce antenna dimensions without significant degradation of communication quality. The contents of this book are based on cutting-edge data collected from numerous technical papers, patents, and patent applications. It presents an overview of many commercially available automotive antennas and covers features that have become standard in automotive applications, such as printed-on car glass antennas, reduced-size helical antennas, multiband compact, printed-on dielectric and patch designs in a single package. Includes simulation examples of antenna parameters that significantly speed up the design process using software packages such as FEKO, NEC, IE3D, and Genesys Highlighting the practical aspects of antenna design, the authors present passive and active designs and describe the entire design process, including antenna simulation, prototype sample fabrication, and laboratory test measurements. The book also covers the production adjustments that can result from the demands of the real car environment. The presentation of numerous examples of passive and active automotive antennas greatly enhances this reference’s value to professionals, students, and anyone else working in the ever-evolving field of antenna design and application.
Electron-Ion-Plasma Modification of a Hypereutectic Al-Si Alloy details theoretical and experimental research and computer simulation of structural phase transformations in AlSi10Mn2Ni Silumin on different scale levels under electroexplosion alloying, electron beam processing and electron-plasma alloying at the nanolevel in order to create new materials. The authors summarize and analyze more than 10 years of research on the electron-ion-plasma effect on strength properties and structure-phase states’ transformations of hypoeutectic Silumin. Key Features: Details physical and mathematical models of mechanisms of surface layer hardening under conditions of varying energy effects Offers insights into improved strength characteristics of Silumin Explores optimal processing modes for increased strength and improved tribological characteristics This book is a valuable resource to researchers and engineers involved with the modification of light alloy surfaces for the automotive and aeronautical industry.
Richard Stanley's work in combinatorics revolutionized and reshaped the subject. Many of his hallmark ideas and techniques imported from other areas of mathematics have become mainstays in the framework of modern combinatorics. In addition to collecting several of Stanley's most influential papers, this volume also includes his own short reminiscences on his early years, and on his celebrated proof of The Upper Bound Theorem.
High temperature superconducting theory drew controversy after the discovery of superconductors at close to room temperatures. However, a consistent microscopic theory of HT superconductivity based on bipolaron mechanism leads to a better understanding of microscopic and macroscopic description. By presenting aspects of superconductivity now joined in a strict theory rather than separate models this work is especially useful for graduate students.
This book is a comprehensive climatic monograph, which addresses one of the most complex mountain environments in Europe, the Carpathians Chain, focusing on the branches that lie over Romania. The volume aggregates high quality input data, state-of-the-art techniques, regional analysis and overview perspectives, while addressing the spatial and temporal patterns of the main climatic elements. The study covers the period 1961-2010, for the present climate, while the perspective is extended up to 2050. The main climatic elements (e.g. air temperature, precipitation, wind) are analyzed, but some specific variables like snow depth and snow cover are also examined, both in terms of average behaviour and extreme characteristics. This is the first synthesis addressing the climate of this mountain region, and it provides useful information for scientists, mountain stakeholders, decision-makers and general public.
Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels
This book discusses the physics of conductive channel development in space, air and vacuums and summarizes the attempts to create super-long conductive channels to study the upper atmosphere and to complete specific tasks related to energy transmission from the space to earth with high-voltage high repetition rate electrical sources. Conductive channels are produced by the laser jet engine vehicle-propulsion under the influence of powerful high repetition rate pulse-periodic laser radiation by CO2-laser, solid state Nd YAG,HF/DF laser systems generated with each pulse of the powerful laser conductive dust plasma. The book also presents the experimental and theoretical results of conductive canal modeling: the laser jet engine vehicle “Impulsar”, which can reach the lower layers of the ionosphere in several hundred seconds. Further, the book explores the development of lightning protection systems. The so-called long laser spark is generated to provide the conditions for connecting a thunderstorm cloud with a grounded metal rod, i.e. a classical lightning rod. Such conductivity channels can be used for energy transmission, overvoltage protection systems, transport of charged particle beams and plasma antennas. It provides the theoretical and experimental basis of high repetition rate P-P mode of operation for high power lasers (COIL, HF/DF, CO2,Nd YAG). It describes high efficiency and excellent beam quality disk lasers used for numerous applications, including surface treatment of dielectric materials in microelectronics, cutting, drilling, welding, polishing and cleaning of the surface and other technological operations. Lastly it investigates how megawatt mono-module disk lasers could be used to solve various problems: small satellites launched by lasers, formation of super-long conducting channels in space and atmosphere, cleaning of the near-earth space from the space debris and related applications.
Hierarchic Electrodynamics and Free Electron Lasers: Concepts, Calculations, and Practical Applications presents intriguing new fundamental concepts in the phenomenon of hierarchical electrodynamics as a new direction in physics. Concentrating on the key theory of hierarchic oscillations and waves, this book focuses on the numerous applications of nonlinear theory in different types of high-current Free Electron Lasers (FEL), including their primary function in the calculation methods used to analyze various multi-resonant, multi-frequency nonlinear FEL models. This is considered the first book to: Completely and systematically describe the foundation of hierarchical electrodynamics as a new direction of physics Fully represent the physics of high-current FEL—and associated models—from the hierarchic oscillation wave perspective Cover the multi-harmonic nonlinear theory of new types of electronic devices, such as plasma-beam and two-stream FEL Formulate and substantiate the concept of cluster femtosecond FEL Analyze practical prospects for a new generation of a global "Star Wars" strategic defense systems These subjects involve a wide range of disciplines. Using numerous real-world examples to illustrate information and concepts, the book offers a mathematical foundation to explore FEL applications as well as analyze hierarchic plasma-like electrodynamic systems and femto-second clusters of electromagnetic energy. Assembling fragmented concepts from existing literature, the author re-examines classic approaches in order to develop new insights and achieve scientific breakthroughs.
Atomic force microscopy (AFM) is part of a range of emerging microscopic methods for biologists which offer the magnification range of both the light and electron microscope, but allow imaging under the 'natural' conditions usually associated with the light microscope. To biologists, AFM offers the prospect of high resolution images of biological material, images of molecules and their interactions even under physiological conditions, and the study of molecular processes in living systems. This book provides a realistic appreciation of the advantages and limitations of the technique and the present and future potential for improving the understanding of biological systems.The second edition of this bestseller has been updated to describe the latest developments in this exciting field, including a brand new chapter on force spectroscopy. The dramatic developments of AFM over the past ten years from a simple imaging tool to the multi-faceted, nano-manipulating technique that it is today are conveyed in a lively and informative narrative, which provides essential reading for students and experienced researchers alike./a
Based on talks given at the International Conference on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak (Novosibirsk, 2004), this title includes topics such as geometry of spaces with bounded curvature in the sense of Alexandrov, quasiconformal mappings and mappings with bounded distortion, and nonlinear potential theory.
Since publication of the First Edition in 1982, Hemostasis and Thrombosis has established itself as the pre-eminent book in the field of coagulation disorders. No other book is as inclusive in scope, with coverage of the field from the standpoint of both basic scientists and clinicians. This comprehensive resource details the essentials of bleeding and thrombotic disorders and the management of patients with these and related problems, and delivers the most up-to-date information on normal biochemistry and function of platelets or endothelial cells, as well as in-depth discussions of the pharmacology of anticoagulant, fibrinolytic, and hemostatic drugs. NEW to the Sixth Edition... • A new team of editors, each a leader in his field, assures you of fresh, authoritative perspectives. • Full color throughout • A companion website that offers full text online and an image bank. • A new introductory section of chapters on basic sciences as related to the field • Entirely new section on Hemostatic and Thrombotic Disorders Associated with Systemic Conditions includes material on pediatric patients, women's health issues, cancer, sickle cell disease, and other groups. • Overview chapters preceding each section address broad topics of general importance. This is the tablet version which does not include access to the supplemental content mentioned in the text.
This book deals with general quantitative regularities of the alteration of evolutionary and reconstruction (critical) periods of development. An equation and a model of development are introduced which generalize a wide range of commonly accepted models, allowing the analysis of the characteristics of processes occurring on different structural levels of natural system organization. On the basis of this model, a hierarchy of critical constants has been established, applicable to, for example, geological history, cyclicity in the individual development of animals, structures of population and ecological systems, as well as to the perception of acoustical signals by man.
The book presents solutions to a complex of internal and external problems of electromagnetics associated with the development of theory, construction of mathematical models and the development of rigorous methods for calculating the electrodynamic characteristics of combined vibrator-slot structures. The solutions of problems for determining the characteristics of impedance vibrator and slot radiators with arbitrary geometric and electrophysical parameters presented in the monograph were obtained within the framework of the unified methodological approach to construct asymptotic solutions of integral equations on currents and their systems. This approach made it possible to study a number of new combined vibrator-slot structures. The research results reveal the possibilities of using such structures as basic elements in the creation of modern antenna-waveguide devices operating in the ranges from meter to millimeter wavelengths, with new technical characteristics and functional purpose. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna-feeder design. The book covers the following topics: • excitation of electromagnetic waves in volumes with coordinate boundaries;• general issues of the theory of thin impedance vibrators and narrow slots in a spatial-frequency representation;• solution of current equations for isolated vibrator and slot scatterers;• combined radiating vibrator-slot structures in rectangular waveguide;• T-junctions of rectangular waveguides with vibrator-slot structures in coupling areas;• waveguide radiation of the combined vibrator-slot structures;• combined vibrator-slot structures located on a perfectly conducting sphere;• combined vibrator-slot Radiators in antenna arrays;• ultrawideband vibrator-slot structures;
This book considers computer vision to be an integral part of the artificial intelligence system. The core of the book is an analysis of possible approaches to the creation of artificial vision systems, which simulate human visual perception. Much attention is paid to the latest achievements in visual psychology and physiology, the description of the functional and structural organization of the human perception mechanism, the peculiarities of artistic perception and the expression of reality. Computer vision models based on these data are investigated. They include the processes of external data analysis, internal environmental model synthesis, and the generating of behavioristic responses based on external and internal models comparison. Computer vision system evolution resulting from environmental effects is also considered. A unique feature of this book is the authors' use of black and white, and colour prints of traditional and contemporary Russian art to illustrate their principal theses. In doing so, they introduce the reader to a particularly Russian view of the world.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.