This book is devoted to a new branch of experimental design theory called simulation experimental design. There are many books devoted either to the theory of experimental design or to system simulation techniques, but in this book an approach to combine both fields is developed. Especially the mathematical theory of such universal variance reduction techniques as splitting and Russian Roulette is explored. The book contains a number of results on regression design theory related to nonlinear problems, the E-optimum criterion and designs which minimize bias. Audience: This volume will be of value to readers interested in systems simulation, applied statistics and numerical methods with basic knowledge of applied statistics and linear algebra.
The present book is devoted to studying optimal experimental designs for a wide class of linear and nonlinear regression models. This class includes polynomial, trigonometrical, rational, and exponential models as well as many particular models used in ecology and microbiology. As the criteria of optimality, the well known D-, E-, and c-criteria are implemented. The main idea of the book is to study the dependence of optimal - signs on values of unknown parameters and on the bounds of the design interval. Such a study can be performed on the base of the Implicit Fu- tion Theorem, the classical result of functional analysis. The idea was ?rst introduced in the author’s paper (Melas, 1978) for nonlinear in parameters exponential models. Recently, it was developed for other models in a n- ber of works (Melas (1995, 2000, 2001, 2004, 2005), Dette, Melas (2002, 2003), Dette, Melas, Pepelyshev (2002, 2003, 2004b), and Dette, Melas, Biederman (2002)). Thepurposeofthepresentbookistobringtogethertheresultsobtained and to develop further underlying concepts and tools. The approach, m- tioned above, will be called the functional approach. Its brief description can be found in the Introduction. The book contains eight chapters. The ?rst chapter introduces basic concepts and results of optimal design theory, initiated mainly by J.Kiefer.
The present book is devoted to studying optimal experimental designs for a wide class of linear and nonlinear regression models. This class includes polynomial, trigonometrical, rational, and exponential models as well as many particular models used in ecology and microbiology. As the criteria of optimality, the well known D-, E-, and c-criteria are implemented. The main idea of the book is to study the dependence of optimal - signs on values of unknown parameters and on the bounds of the design interval. Such a study can be performed on the base of the Implicit Fu- tion Theorem, the classical result of functional analysis. The idea was ?rst introduced in the author’s paper (Melas, 1978) for nonlinear in parameters exponential models. Recently, it was developed for other models in a n- ber of works (Melas (1995, 2000, 2001, 2004, 2005), Dette, Melas (2002, 2003), Dette, Melas, Pepelyshev (2002, 2003, 2004b), and Dette, Melas, Biederman (2002)). Thepurposeofthepresentbookistobringtogethertheresultsobtained and to develop further underlying concepts and tools. The approach, m- tioned above, will be called the functional approach. Its brief description can be found in the Introduction. The book contains eight chapters. The ?rst chapter introduces basic concepts and results of optimal design theory, initiated mainly by J.Kiefer.
This book is devoted to a new branch of experimental design theory called simulation experimental design. There are many books devoted either to the theory of experimental design or to system simulation techniques, but in this book an approach to combine both fields is developed. Especially the mathematical theory of such universal variance reduction techniques as splitting and Russian Roulette is explored. The book contains a number of results on regression design theory related to nonlinear problems, the E-optimum criterion and designs which minimize bias. Audience: This volume will be of value to readers interested in systems simulation, applied statistics and numerical methods with basic knowledge of applied statistics and linear algebra.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.