This book suggests a new common approach to the study of resonance energy transport based on the recently developed concept of Limiting Phase Trajectories (LPTs), presenting applications of the approach to significant nonlinear problems from different fields of physics and mechanics. In order to highlight the novelty and perspectives of the developed approach, it places the LPT concept in the context of dynamical phenomena related to the energy transfer problems and applies the theory to numerous problems of practical importance. This approach leads to the conclusion that strongly nonstationary resonance processes in nonlinear oscillator arrays and nanostructures are characterized either by maximum possible energy exchange between the clusters of oscillators (coherence domains) or by maximum energy transfer from an external source of energy to the chain. The trajectories corresponding to these processes are referred to as LPTs. The development and the use of the LPTs concept a re motivated by the fact that non-stationary processes in a broad variety of finite-dimensional physical models are beyond the well-known paradigm of nonlinear normal modes (NNMs), which is fully justified either for stationary processes or for nonstationary non-resonance processes described exactly or approximately by the combinations of the non-resonant normal modes. Thus, the role of LPTs in understanding and analyzing of intense resonance energy transfer is similar to the role of NNMs for the stationary processes. The book is a valuable resource for engineers needing to deal effectively with the problems arising in the fields of mechanical and physical applications, when the natural physical model is quite complicated. At the same time, the mathematical analysis means that it is of interest to researchers working on the theory and numerical investigation of nonlinear oscillations.
Control of atomic motion with resonant laser light is the most interesting field of research which is rapidly expanding. The book discusses the latest theoretical and experimental achievements in the study of these phenomena. The fundamental questions of the theory of resonant light pressure are given in the book. They are: 1. Optical Stern-Gerlach Effect and Quantization of Atomic Motion in a Light Field; 2. Theory of Light Pressure Force and Atomic Kinetics in a Strong Field; 3. Diffraction and Interference of Atoms; 4. Velocity Bunching Effect, Cooling and Localization of Atoms in Light Field, and 5. Polarization Phenomena and Recoil Effect. The most important experiments are also discussed in this book. While the book may be used to get a primary acquaintance with the subject, specialists will also find the latest theoretical and experimental results and achievements in this field discussed here.
This title was first published in 2000: Using micro-level data, this text shows that rural Russian households have made significant adaptations to an emerging market economy in just a few years. It focuses on how household capital (household labour, social networks and comunity attachment) effect the economic and psychological adaptation of households to rapid socioeconomic change. Findings are from 1995 to 1997 panel surveys made in three waves. The book deals systematically with micro-level processes of household adaptation to a market economy, institutional change and emerging informal and formal patterns of land tenure and use in Russia. It shows how structural changes are occurring in rural Russia and their impact on household enterprise development and income. Difference in household capital explains the emergence of inequality in the countryside and differences in the degree to which households experience stress and a higher or lower subjective quality of life.
In the modern theory of boundary value problems the following ap proach to investigation is agreed upon (we call it the functional approach): some functional spaces are chosen; the statements of boundary value prob the basis of these spaces; and the solvability of lems are formulated on the problems, properties of solutions, and their dependence on the original data of the problems are analyzed. These stages are put on the basis of the correct statement of different problems of mathematical physics (or of the definition of ill-posed problems). For example, if the solvability of a prob lem in the functional spaces chosen cannot be established then, probably, the reason is in their unsatisfactory choice. Then the analysis should be repeated employing other functional spaces. Elliptical problems can serve as an example of classical problems which are analyzed by this approach. Their investigations brought a number of new notions and results in the theory of Sobolev spaces W;(D) which, in turn, enabled us to create a sufficiently complete theory of solvability of elliptical equations. Nowadays the mathematical theory of radiative transfer problems and kinetic equations is an extensive area of modern mathematical physics. It has various applications in astrophysics, the theory of nuclear reactors, geophysics, the theory of chemical processes, semiconductor theory, fluid mechanics, etc. [25,29,31,39,40, 47, 52, 78, 83, 94, 98, 120, 124, 125, 135, 146].
This book illustrates how modern mathematical wavelet transform techniques offer fresh insights into the complex behavior of neural systems at different levels: from the microscopic dynamics of individual cells to the macroscopic behavior of large neural networks. It also demonstrates how and where wavelet-based mathematical tools can provide an advantage over classical approaches used in neuroscience. The authors well describe single neuron and populational neural recordings. This 2nd edition discusses novel areas and significant advances resulting from experimental techniques and computational approaches developed since 2015, and includes three new topics: • Detection of fEPSPs in multielectrode LFPs recordings. • Analysis of Visual Sensory Processing in the Brain and BCI for Human Attention Control; • Analysis and Real-time Classification of Motor-related EEG Patterns; The book is a valuable resource for neurophysiologists and physicists familiar with nonlinear dynamical systems and data processing, as well as for graduate students specializing in these and related areas.
The Basman-Sale Variation is a relatively unexplored weapon for Black in the Sicilian Defence. After the perfectly normal moves 1.e4 c5, 2. Nf3 e6, 3. d4 cxd4 4. Nxd4 Black lashes out with 4…Bc5! English IM Michael Basman and Croatian IM Srdjan Sale were the pioneers of this cunning chess opening system. The advantages are clear: it is surprising, aggressive and easy to learn. Compared to the complexity of mainstream Sicilian variations it requires little theoretical preparation, while you don’t run excessive risks. That is why The Lazy Man’s Sicilian is ideal for club players who don’t have much time to study opening theory (or are not too fond of hard work anyway). This easily accessible and up-to-date book offers everything you need to get started with the Basman-Sale Variation. In well-organized chapters it describes the history and underlying ideas of the variation and explains the pawn-structures, the strategies and the tactical themes. What’s more, if you play the Basman-Sale system, there is plenty of room for your own creativity as well!
Stochastic Methods & their Applications to Communications presents a valuable approach to the modelling, synthesis and numerical simulation of random processes with applications in communications and related fields. The authors provide a detailed account of random processes from an engineering point of view and illustrate the concepts with examples taken from the communications area. The discussions mainly focus on the analysis and synthesis of Markov models of random processes as applied to modelling such phenomena as interference and fading in communications. Encompassing both theory and practice, this original text provides a unified approach to the analysis and generation of continuous, impulsive and mixed random processes based on the Fokker-Planck equation for Markov processes. Presents the cumulated analysis of Markov processes Offers a SDE (Stochastic Differential Equations) approach to the generation of random processes with specified characteristics Includes the modelling of communication channels and interfer ences using SDE Features new results and techniques for the of solution of the generalized Fokker-Planck equation Essential reading for researchers, engineers, and graduate and upper year undergraduate students in the field of communications, signal processing, control, physics and other areas of science, this reference will have wide ranging appeal.
The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus of variations, non-smooth and convex analysis, game theory, mathematical economics and in other fields.This book presents a user-friendly and self-contained introduction to both subjects. It is aimed at 'beginners', starting with students of senior courses. The book will be useful both for readers whose interests lie in the sphere of pure mathematics, as well as for those who are involved in applicable aspects of the theory. In Chapter 0, basic definitions and fundamental results in topology are collected. Chapter 1 begins with examples showing how naturally the idea of a multivalued map arises in diverse areas of mathematics, continues with the description of a variety of properties of multivalued maps and finishes with measurable multivalued functions. Chapter 2 is devoted to the theory of fixed points of multivalued maps. The whole of Chapter 3 focuses on the study of differential inclusions and their applications in control theory. The subject of last Chapter 4 is the applications in dynamical systems, game theory, and mathematical economics.The book is completed with the bibliographic commentaries and additions containing the exposition related both to the sections described in the book and to those which left outside its framework. The extensive bibliography (including more than 400 items) leads from basic works to recent studies.
This book suggests a new common approach to the study of resonance energy transport based on the recently developed concept of Limiting Phase Trajectories (LPTs), presenting applications of the approach to significant nonlinear problems from different fields of physics and mechanics. In order to highlight the novelty and perspectives of the developed approach, it places the LPT concept in the context of dynamical phenomena related to the energy transfer problems and applies the theory to numerous problems of practical importance. This approach leads to the conclusion that strongly nonstationary resonance processes in nonlinear oscillator arrays and nanostructures are characterized either by maximum possible energy exchange between the clusters of oscillators (coherence domains) or by maximum energy transfer from an external source of energy to the chain. The trajectories corresponding to these processes are referred to as LPTs. The development and the use of the LPTs concept a re motivated by the fact that non-stationary processes in a broad variety of finite-dimensional physical models are beyond the well-known paradigm of nonlinear normal modes (NNMs), which is fully justified either for stationary processes or for nonstationary non-resonance processes described exactly or approximately by the combinations of the non-resonant normal modes. Thus, the role of LPTs in understanding and analyzing of intense resonance energy transfer is similar to the role of NNMs for the stationary processes. The book is a valuable resource for engineers needing to deal effectively with the problems arising in the fields of mechanical and physical applications, when the natural physical model is quite complicated. At the same time, the mathematical analysis means that it is of interest to researchers working on the theory and numerical investigation of nonlinear oscillations.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.