Matrix methods provide the key to many problems in pure and applied mathematics. However, linear algebra theory, numerical algorithms and matrices in FEM/BEM applications usually live as if in three separate worlds. In this volume, maybe for the first time ever, they are compiled together as one entity as it was at the Moscow meeting, where the algebraic part was impersonated by Hans Schneider, algorithms by Gene Golub, and applications by Guri Marchuk. All topics intervened in plenary sessions are specially categorized into three sections of this volume. --
The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.
Theory and Applications : AMS-IMS-SIAM Joint Summer Research Conference on Fast Algorithms in Mathematics, Computer Science, and Engineering, August 5-9, 2001, Mount Holyoke College, South Hadley, Massachusetts
Theory and Applications : AMS-IMS-SIAM Joint Summer Research Conference on Fast Algorithms in Mathematics, Computer Science, and Engineering, August 5-9, 2001, Mount Holyoke College, South Hadley, Massachusetts
One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.
The lectures gathered in this volume present some of the different aspects of Mathematical Control Theory. Adopting the point of view of Geometric Control Theory and of Nonlinear Control Theory, the lectures focus on some aspects of the Optimization and Control of nonlinear, not necessarily smooth, dynamical systems. Specifically, three of the five lectures discuss respectively: logic-based switching control, sliding mode control and the input to the state stability paradigm for the control and stability of nonlinear systems. The remaining two lectures are devoted to Optimal Control: one investigates the connections between Optimal Control Theory, Dynamical Systems and Differential Geometry, while the second presents a very general version, in a non-smooth context, of the Pontryagin Maximum Principle. The arguments of the whole volume are self-contained and are directed to everyone working in Control Theory. They offer a sound presentation of the methods employed in the control and optimization of nonlinear dynamical systems.
The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.
AMS-IMS-SIAM Joint Summer Research Conference Papers on Fast Algorithms in Mathematics, Computer Science and Engineering. Held August 5-9, 2001 at Mount Holyoke College, South Hadley, Massachusetts.
Theory and Applications : AMS-IMS-SIAM Joint Summer Research Conference on Fast Algorithms in Mathematics, Computer Science, and Engineering, August 5-9, 2001, Mount Holyoke College, South Hadley, Massachusetts
Theory and Applications : AMS-IMS-SIAM Joint Summer Research Conference on Fast Algorithms in Mathematics, Computer Science, and Engineering, August 5-9, 2001, Mount Holyoke College, South Hadley, Massachusetts
One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.
This book consists of translations into English of several pioneering papers in the areas of discrete and continuous convolution operators and on the theory of singular integral operators published originally in Russian. The papers were wr- ten more than thirty years ago, but time showed their importance and growing in?uence in pure and applied mathematics and engineering. The book is divided into two parts. The ?rst ?ve papers, written by I. Gohberg and G. Heinig, form the ?rst part. They are related to the inversion of ?nite block Toeplitz matrices and their continuous analogs (direct and inverse problems) and the theory of discrete and continuous resultants. The second part consists of eight papers by I. Gohberg and N. Krupnik. They are devoted to the theory of one dimensional singular integral operators with discontinuous co- cients on various spaces. Special attention is paid to localization theory, structure of the symbol, and equations with shifts. ThisbookgivesanEnglishspeakingreaderauniqueopportunitytogetfam- iarized with groundbreaking work on the theory of Toepliz matrices and singular integral operators which by now have become classical. In the process of the preparation of the book the translator and the editors took care of several misprints and unessential misstatements. The editors would like to thank the translator A. Karlovich for the thorough job he has done. Our work on this book was started when Israel Gohberg was still alive. We see this book as our tribute to a great mathematician.
This book consists of translations into English of several pioneering papers in the areas of discrete and continuous convolution operators and on the theory of singular integral operators published originally in Russian. The papers were wr- ten more than thirty years ago, but time showed their importance and growing in?uence in pure and applied mathematics and engineering. The book is divided into two parts. The ?rst ?ve papers, written by I. Gohberg and G. Heinig, form the ?rst part. They are related to the inversion of ?nite block Toeplitz matrices and their continuous analogs (direct and inverse problems) and the theory of discrete and continuous resultants. The second part consists of eight papers by I. Gohberg and N. Krupnik. They are devoted to the theory of one dimensional singular integral operators with discontinuous co- cients on various spaces. Special attention is paid to localization theory, structure of the symbol, and equations with shifts. ThisbookgivesanEnglishspeakingreaderauniqueopportunitytogetfam- iarized with groundbreaking work on the theory of Toepliz matrices and singular integral operators which by now have become classical. In the process of the preparation of the book the translator and the editors took care of several misprints and unessential misstatements. The editors would like to thank the translator A. Karlovich for the thorough job he has done. Our work on this book was started when Israel Gohberg was still alive. We see this book as our tribute to a great mathematician.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.