It is not possible to understand the apparent stability of the Earth's climate and environment unless we can fully understand how the best possible environmental conditions may be maintained for life to exist. Human colonization of areas with natural biota, for industrial or agricultural activities, will lead to degradation of those natural communities and violation of the BRE (biotic regulation of the environment) principle. Thus to maintain an environment on Earth that is suitable for life it is necessary to preserve and allow the natural recovery of natural biotic communities, both in the oceans and on land. This book is devoted to a quantitative version of the BRE concept, and is built on a foundation of modern scientific knowledge accumulated in the fields of physics and biology.
Reactive oligomers (ROs) constitute a starting material for the production of numerous polymeric materials with a pre-assigned set of physico-mechanical and physico-chemical properties. This book is the first to treat systematically various methods for determining the FTD and MWD of functional oligomers. Special attention is given to the application of liquid chromatography in different separation modes: exclusion (gel-permeation chromatography, GPC) and adsorption, as well as to the separation of functional oligomers in the critical region (SCR) at the boundary between the specified modes.
The problem of selection of alternatives or the problem of decision making in the modern world has become the most important class of problems constantly faced by business people, researchers, doctors and engineers. The fields that are almost entirely focused on conflicts, where applied mathematics is successfully used, are law, military science, many branches of economics, sociology, political science, and psychology. There are good grounds to believe that medicine and some branches of biology and ethics can also be included in this list. Modern applied mathematics can produce solutions to many tens of classes of conflicts differing by the composition and structure of the participants, specific features of the set of their objectives or interests, and various characteristics of the set of their actions, strategies, behaviors, controls, and decisions as applied to various principles of selection or notions of decision optimization. The current issues of social and economic systems involve the necessity to coordinate and jointly optimize various lines of development and activities of modern society. For this reason, the decision problems arising in investigation of such systems are versatile, which shows up not only in the multiplicity of participants, their interests and complexity of reciprocal effects, but also in the laborious development of social utility criteria for a variety of indices and versatile objectives. The efficient decision methods for such complex systems can be developed only the basis of specially developed mathematical tools. Contents: Social Choice Problems; Vector Optimization; Infinite-Valued Programming Problems; Stochastic Programming; Discrete Programming; Fundamentals of Decision Making; Multicriterion Optimization Problems; Decision Making Under Incomplete Information; Multicriterion Elements of Optimization Theory; Decision Models; Decision Models Under Fuzzy Information; The Applied Mathematical Model for Conflict Management. Readership: Undergraduates, graduate students, professionals and researchers in applied mathematics.
This text deals with the estimation, prediction and improvement of the durability of building structures and constructions from composite materials with inorganic, organic and mixed binders. It describes a method for improving the durability of structures and constructions.
It is not possible to understand the apparent stability of the Earth's climate and environment unless we can fully understand how the best possible environmental conditions may be maintained for life to exist. Human colonization of areas with natural biota, for industrial or agricultural activities, will lead to degradation of those natural communities and violation of the BRE (biotic regulation of the environment) principle. Thus to maintain an environment on Earth that is suitable for life it is necessary to preserve and allow the natural recovery of natural biotic communities, both in the oceans and on land. This book is devoted to a quantitative version of the BRE concept, and is built on a foundation of modern scientific knowledge accumulated in the fields of physics and biology.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.