In Volume 30, an attempt is made to consider comprehensively both theoretical and experimental data that have been obtained to date on electron tunneling reactions involving chemical compounds of various classes, and to discuss the role played by these reactions in different areas of chemistry. The discussion of the above problem is preceded by a review of data on tunneling phenomena in nuclear physics, atomic physics, solid-state physics, as well as on the tunneling effects in chemistry that go beyond the framework of the main subject of this monograph. This review is included to acquaint the reader with the role of tunneling phenomena in physics and chemistry as a whole, to show how diversified the kingdom of tunneling phenomena is, and to see more distinctly the similarities and the differences between electron tunneling in chemical reactions and other tunnel phenomena.
vi industrial process or a class of catalysts forms the basis of other books, with information on: fundamental science of the topic, the use of the pro cess or catalysts, and engineering aspects. Single topics in catalysis are also treated in the series, with books giving the theory of the underlying science, and relating it to catalytic practice. We believe that this approach is giving a collection of volumes that is of value to both academic and industrial workers. The series editors welcome comments on the series and suggestions of topics for future volumes. Martyn Twigg Michael Spencer Billingham and Cardiff Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 1 . . . . . . . . Chapter 1. Vibrational Relaxation of Adsorbed Particles . . . .. . 5 1.1. General Approach to Describing Vibrational Relaxation ..... 5 1.2. Phonon Mechanism of Relaxation .................... 8 1.2.1. Relationship between the Simple Perturbation Theory and the Adiabatic Approximation .. . . . . . . . . . .. . . 9 . 1.2.2. One-Mode Approximation .................. . .. 11 1.2.3. Relaxation Caused by Correlation Potential Proportional to Displacement of Adsorbed Particle from Equilibrium ........................... 12 1.2.4. Relaxation Caused by Correlation Potential Proportional to Displacement of Surface Atom from Equilibrium ........................... 14 1.2.5. Results and Discussion ....................... 15 1.3. Vibrational Relaxation via Interaction with Conduction Electrons . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 18 . . . . . . . . . 1.3.1. Dipole Approximation ......... '.' . . . . . . . . .. . . 18 .
In Volume 30, an attempt is made to consider comprehensively both theoretical and experimental data that have been obtained to date on electron tunneling reactions involving chemical compounds of various classes, and to discuss the role played by these reactions in different areas of chemistry. The discussion of the above problem is preceded by a review of data on tunneling phenomena in nuclear physics, atomic physics, solid-state physics, as well as on the tunneling effects in chemistry that go beyond the framework of the main subject of this monograph. This review is included to acquaint the reader with the role of tunneling phenomena in physics and chemistry as a whole, to show how diversified the kingdom of tunneling phenomena is, and to see more distinctly the similarities and the differences between electron tunneling in chemical reactions and other tunnel phenomena.
vi industrial process or a class of catalysts forms the basis of other books, with information on: fundamental science of the topic, the use of the pro cess or catalysts, and engineering aspects. Single topics in catalysis are also treated in the series, with books giving the theory of the underlying science, and relating it to catalytic practice. We believe that this approach is giving a collection of volumes that is of value to both academic and industrial workers. The series editors welcome comments on the series and suggestions of topics for future volumes. Martyn Twigg Michael Spencer Billingham and Cardiff Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 1 . . . . . . . . Chapter 1. Vibrational Relaxation of Adsorbed Particles . . . .. . 5 1.1. General Approach to Describing Vibrational Relaxation ..... 5 1.2. Phonon Mechanism of Relaxation .................... 8 1.2.1. Relationship between the Simple Perturbation Theory and the Adiabatic Approximation .. . . . . . . . . . .. . . 9 . 1.2.2. One-Mode Approximation .................. . .. 11 1.2.3. Relaxation Caused by Correlation Potential Proportional to Displacement of Adsorbed Particle from Equilibrium ........................... 12 1.2.4. Relaxation Caused by Correlation Potential Proportional to Displacement of Surface Atom from Equilibrium ........................... 14 1.2.5. Results and Discussion ....................... 15 1.3. Vibrational Relaxation via Interaction with Conduction Electrons . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 18 . . . . . . . . . 1.3.1. Dipole Approximation ......... '.' . . . . . . . . .. . . 18 .
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.