This carefully prepared manuscript presents elimination theory in weighted projective spaces over arbitrary noetherian commutative base rings. Elimination theory is a classical topic in commutative algebra and algebraic geometry, and it has become of renewed importance recently in the context of applied and computational algebra. This monograph pro
Along the lines developed by Grothendieck, this book delves into the rich interplay between algebraic geometry and commutative algebra. With concise yet clear definitions and synopses a selection is made from the wealth of meterial in the disciplines including the Riemann-Roch theorem for arbitrary projective curves."--pub. desc.
The present volume continues Koopman's book on the systematics of the Chiroptera from 1994 with three further contributions, namely on the Biology of Flight, the Sensory Organs, and on Chronobiology. Written by internationally wellknown authors these contributions present information on their topics in unique breadth and depth, all of them furnished with an extensive bibliography. The language is either English or German; contributions in the German language having an English summary.
The first monograph to compile observations about the post-embryonic development of the morphologically and ecologically diverse subclass Copepoda. Analyses provide insights into the correspondence of developmental stages among species, architecture of the naupliar body, and patterning of copepodid body and limbs.
This carefully prepared manuscript presents elimination theory in weighted projective spaces over arbitrary noetherian commutative base rings. Elimination theory is a classical topic in commutative algebra and algebraic geometry, and it has become of renewed importance recently in the context of applied and computational algebra. This monograph pro
Along the lines developed by Grothendieck, this book delves into the rich interplay between algebraic geometry and commutative algebra. With concise yet clear definitions and synopses a selection is made from the wealth of meterial in the disciplines including the Riemann-Roch theorem for arbitrary projective curves."--pub. desc.
Along the lines developed by Grothendieck, this book delves into the rich interplay between algebraic geometry and commutative algebra. With concise yet clear definitions and synopses a selection is made from the wealth of meterial in the disciplines including the Riemann-Roch theorem for arbitrary projective curves."--pub. desc.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.