Computer Arithmetic in Theory and Practice deals with computer arithmetic and the various implementations of the entire arithmetic package on diverse processors, including microprocessors. It illustrates the importance of theoretical development in the sound implementation of arithmetic on computers, and argues that such an implementation requires the establishment of various isomorphisms between different definitions of arithmetic operations. Comprised of seven chapters, this volume begins with an introduction to the theory of computer arithmetic by giving an axiomatic characterization of the essential properties of sets and subsets; complete lattices and complete subnets; screens and roundings; and arithmetic operations. The discussion then turns to the concepts of a ringoid and a vectoid as well as those of ordered or weakly ordered ringoids and vectoids; interval arithmetic; and floating-point arithmetic. The operations in interval spaces are defined by means of semimorphisms. The final chapter shows how to embed the five basic data types (integer, real, complex, real interval, and complex interval) together with the arithmetic operations that are defined for all of these types into existing higher programming languages. This book will be helpful to students and practitioners in the fields of computer science and applied mathematics.
The number one requirement for computer arithmetic has always been speed. It is the main force that drives the technology. With increased speed larger problems can be attempted. To gain speed, advanced processors and pro gramming languages offer, for instance, compound arithmetic operations like matmul and dotproduct. But there is another side to the computational coin - the accuracy and reliability of the computed result. Progress on this side is very important, if not essential. Compound arithmetic operations, for instance, should always deliver a correct result. The user should not be obliged to perform an error analysis every time a compound arithmetic operation, implemented by the hardware manufacturer or in the programming language, is employed. This treatise deals with computer arithmetic in a more general sense than usual. Advanced computer arithmetic extends the accuracy of the elementary floating-point operations, for instance, as defined by the IEEE arithmetic standard, to all operations in the usual product spaces of computation: the complex numbers, the real and complex intervals, and the real and complex vectors and matrices and their interval counterparts. The implementation of advanced computer arithmetic by fast hardware is examined in this book. Arithmetic units for its elementary components are described. It is shown that the requirements for speed and for reliability do not conflict with each other. Advanced computer arithmetic is superior to other arithmetic with respect to accuracy, costs, and speed.
About three decades after the first experiments on deep inelastic lepton hadron scattering began to investigate the structure of hadrons, the history of this fruitful field of particle physics continues in the broad spectrum of research performed at the electron and positron proton collider HERA at DESY, where the multipurpose detectors ZEUS and H1 access ep scattering at a center of mass energy of 300 GeV and explore as yet uncharted kinematic realms of deep inelastic scattering. After the first years of data taking at HERA, each of the experiments has collected a total of roughly 40 pb 1 of e+p data, yielding sensitivity to deep inelastic e+p interactions at high four momentum transfers, Q2, where typi cal cross sections drop into the subpicobarn regime. This kinematic domain is characterized by electroweak unification, manifesting itself most markedly in the neutral and charged current cross sections, which approach an equal order of magnitude as Q2 rises above the square of the W and Z masses. Consequently, HERA allows, for the first time, studies of both types of pro cesses simultaneously with the same initial state conditions and in the same detector, and thus we can investigate the interplay of electroweak and strong forces governing the respective cross sections.
This is the revised and extended second edition of the successful basic book on computer arithmetic. It is consistent with the newest recent standard developments in the field. The book shows how the arithmetic and mathematical capability of the digital computer can be enhanced in a quite natural way. The work is motivated by the desire and the need to improve the accuracy of numerical computing and to control the quality of the computed results (validity). The accuracy requirements for the elementary floating-point operations are extended to the customary product spaces of computations including interval spaces. The mathematical properties of these models are extracted into an axiomatic approach which leads to a general theory of computer arithmetic. Detailed methods and circuits for the implementation of this advanced computer arithmetic on digital computers are developed in part two of the book. Part three then illustrates by a number of sample applications how this extended computer arithmetic can be used to compute highly accurate and mathematically verified results. The book can be used as a high-level undergraduate textbook but also as reference work for research in computer arithmetic and applied mathematics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.