Learn the principles and practices of simulation-based analog IC design This comprehensive textbook and on-the-job reference offers clear instruction on analog integrated circuit design using the latest simulation techniques. Ideal for graduate students and professionals alike, the book shows, step by step, how to develop and deploy integrated circuits for cutting-edge Internet of Things (IoT) and other applications. Analog Integrated Circuit Design by Simulation: Techniques, Tools, and Methods lays out practical, ready-to-apply engineering strategies. Application layer, device layer, and circuit layer IC design are covered in complete detail. You will learn how to tackle real-world design problems and avoid long cycles of trial and error. Coverage includes: First-order DC response Unified closed-loop model Accurate modeling of DC response Frequency and step response Multi-pole dynamic response and stability Effect of external network on differential gain Continuous-time and discrete-time amplifiers MOSFET, NMOS, and PMOS characteristics Small-signal modeling and circuit analysis Resistor and capacitor design Current sources, sinks, and mirrors Basic, symmetrical, folded-cascode, and Miller OTAs Opamps with source-follower and common-source output stages Fully differential OTAs and opamps
Learn the principles and practices of simulation-based analog IC design This comprehensive textbook and on-the-job reference offers clear instruction on analog integrated circuit design using the latest simulation techniques. Ideal for graduate students and professionals alike, the book shows, step by step, how to develop and deploy integrated circuits for cutting-edge Internet of Things (IoT) and other applications. Analog Integrated Circuit Design by Simulation: Techniques, Tools, and Methods lays out practical, ready-to-apply engineering strategies. Application layer, device layer, and circuit layer IC design are covered in complete detail. You will learn how to tackle real-world design problems and avoid long cycles of trial and error. Coverage includes: First-order DC response Unified closed-loop model Accurate modeling of DC response Frequency and step response Multi-pole dynamic response and stability Effect of external network on differential gain Continuous-time and discrete-time amplifiers MOSFET, NMOS, and PMOS characteristics Small-signal modeling and circuit analysis Resistor and capacitor design Current sources, sinks, and mirrors Basic, symmetrical, folded-cascode, and Miller OTAs Opamps with source-follower and common-source output stages Fully differential OTAs and opamps
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.