This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis. Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?
In this second book of what will be a four-volume series, the authors present, in a mathematically rigorous way, the essential foundations of both the theory and practice of algorithms, approximation, and optimization—essential topics in modern applied and computational mathematics. This material is the introductory framework upon which algorithm analysis, optimization, probability, statistics, machine learning, and control theory are built. This text gives a unified treatment of several topics that do not usually appear together: the theory and analysis of algorithms for mathematicians and data science students; probability and its applications; the theory and applications of approximation, including Fourier series, wavelets, and polynomial approximation; and the theory and practice of optimization, including dynamic optimization. When used in concert with the free supplemental lab materials, Foundations of Applied Mathematics, Volume 2: Algorithms, Approximation, Optimization teaches not only the theory but also the computational practice of modern mathematical methods. Exercises and examples build upon each other in a way that continually reinforces previous ideas, allowing students to retain learned concepts while achieving a greater depth. The mathematically rigorous lab content guides students to technical proficiency and answers the age-old question “When am I going to use this?” This textbook is geared toward advanced undergraduate and beginning graduate students in mathematics, data science, and machine learning.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.