Recently, there has appeared a new type of evaluating partial differential equations with Volterra integral operators in various practical areas. Such equations possess new physical and mathematical properties. This monograph systematically discusses application of the finite element methods to numerical solution of integrodifferential equations. It will be useful for numerical analysts, mathematicians, physicists and engineers. Advanced undergraduates and graduate students should also find it beneficial.
The splitting extrapolation method is a newly developed technique for solving multidimensional mathematical problems. It overcomes the difficulties arising from Richardson's extrapolation when applied to these problems and obtains higher accuracy solutions with lower cost and a high degree of parallelism. The method is particularly suitable for solving large scale scientific and engineering problems.This book presents applications of the method to multidimensional integration, integral equations and partial differential equations. It also gives an introduction to combination methods which are relevant to splitting extrapolation. The book is intended for those who may exploit these methods and it requires only a basic knowledge of numerical analysis.
The splitting extrapolation method is a newly developed technique for solving multidimensional mathematical problems. It overcomes the difficulties arising from Richardson's extrapolation when applied to these problems and obtains higher accuracy solutions with lower cost and a high degree of parallelism. The method is particularly suitable for solving large scale scientific and engineering problems.This book presents applications of the method to multidimensional integration, integral equations and partial differential equations. It also gives an introduction to combination methods which are relevant to splitting extrapolation. The book is intended for those who may exploit these methods and it requires only a basic knowledge of numerical analysis.
Recently, there has appeared a new type of evaluating partial differential equations with Volterra integral operators in various practical areas. Such equations possess new physical and mathematical properties. This monograph systematically discusses application of the finite element methods to numerical solution of integrodifferential equations. It will be useful for numerical analysts, mathematicians, physicists and engineers. Advanced undergraduates and graduate students should also find it beneficial.
Recently, there has appeared a new type of evaluating partial differential equations with Volterra integral operators in various practical areas. Such equations possess new physical and mathematical properties. This monograph systematically discusses application of the finite element methods to numerical solution of integrodifferential equations. It will be useful for numerical analysts, mathematicians, physicists and engineers. Advanced undergraduates and graduate students should also find it beneficial.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.