Introduction to Differential Geometry with applications to Navier-Stokes Dynamics is an invaluable manuscript for anyone who wants to understand and use exterior calculus and differential geometry, the modern approach to calculus and geometry. Author Troy Story makes use of over thirty years of research experience to provide a smooth transition from conventional calculus to exterior calculus and differential geometry, assuming only a knowledge of conventional calculus. Introduction to Differential Geometry with applications to Navier-Stokes Dynamics includes the topics: Geometry, Exterior calculus, Homology and co-homology, Applications of differential geometry and exterior calculus to: Hamiltonian mechanics, geometric optics, irreversible thermodynamics, black hole dynamics, electromagnetism, classical string fields, and Navier-Stokes dynamics.
Dynamics on Differential One-Forms proposes a unifying principle for mathematical models of dynamic systems. In "Thermodynamics on One-Forms (chapter I)", the long-standing problem of deriving irreversibility in thermodynamics from reversibility in Hamiltonian mechanics, is solved. Differential geometric analysis shows thermodynamics and Hamiltonian mechanics are both irreversible on representative extended phase spaces. "Dynamics on Differential One-Forms (II)" generalizes (I) to Hamiltonian mechanics, geometric optics, thermodynamics, black holes, electromagnetic fields and string fields. Mathematical models for these systems are revealed as representations of a unifying principle; namely, description of a dynamic system with a characteristic differential one-form on an odd-dimensional differentiable manifold leads, by analysis with exterior calculus, to a set of differential equations and a tangent vector defining system transformations. Relationships between models using exterior calculus and conventional calculus imply a technical definition of dynamic equilibrium. "Global Analysis of Composite Particles (III)" uses differential topology to develop the theory of large vibration-rotation interactions for composite particles. A global classical Hamiltonian and corresponding quantum Hamiltonian operator are derived, then applied to the molecular vibration-rotation problem. "Characteristic Electromagnetic and Yang-Mills Gauge (IV)" uses differential geometry to remove some of the arbitrariness in the gauge, and shows how gauge functions for electromagnetic and Yang-Mills fields follow the same differential equation.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.