The second edition of Mathematics as a Laboratory Tool reflects the growing impact that computational science is having on the career choices made by undergraduate science and engineering students. The focus is on dynamics and the effects of time delays and stochastic perturbations (“noise”) on the regulation provided by feedback control systems. The concepts are illustrated with applications to gene regulatory networks, motor control, neuroscience and population biology. The presentation in the first edition has been extended to include discussions of neuronal excitability and bursting, multistability, microchaos, Bayesian inference, second-order delay differential equations, and the semi-discretization method for the numerical integration of delay differential equations. Every effort has been made to ensure that the material is accessible to those with a background in calculus. The text provides advanced mathematical concepts such as the Laplace and Fourier integral transforms in the form of Tools. Bayesian inference is introduced using a number of detective-type scenarios including the Monty Hall problem.
This book presents a unique fusion of two different research topics. One is related to the traditional mathematical problem of chases and escapes. The problem mainly deals with a situation where a chaser pursues an evader to analyze their trajectories and capture time. It dates back more than 300 years and has developed in various directions such as differential games. The other topic is the recently developing field of collective behavior, which investigates origins and properties of emergent behavior in groups of self-driving units. Applications include schools of fish, flocks of birds, and traffic jams. This book first reviews representative topics, both old and new, from these two areas. Then it presents the combined research topic of "group chase and escape", recently proposed by the authors. Although the combination is simple and straightforward, the book describes the emergence of rather intricate behavior, provoking the interest of readers for further developments and applications of related topics.
This book presents a unique fusion of two different research topics. One is related to the traditional mathematical problem of chases and escapes. The problem mainly deals with a situation where a chaser pursues an evader to analyze their trajectories and capture time. It dates back more than 300 years and has developed in various directions such as differential games. The other topic is the recently developing field of collective behavior, which investigates origins and properties of emergent behavior in groups of self-driving units. Applications include schools of fish, flocks of birds, and traffic jams. This book first reviews representative topics, both old and new, from these two areas. Then it presents the combined research topic of "group chase and escape", recently proposed by the authors. Although the combination is simple and straightforward, the book describes the emergence of rather intricate behavior, provoking the interest of readers for further developments and applications of related topics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.