Bridges the gap between device modelling and analog circuit design. Includes dedicated software enabling actual circuit design. Covers the three significant models: BSIM3, Model 9 &, and EKV. Presents practical guidance on device development and circuit implementation. The authors offer a combination of extensive academic and industrial experience.
CMOS technology has now reached a state of evolution, in terms of both frequency and noise, where it is becoming a serious contender for radio frequency (RF) applications in the GHz range. Cutoff frequencies of about 50 GHz have been reported for 0.18 æm CMOS technology, and are expected to reach about 100 GHz when the feature size shrinks to 100 nm within a few years. This translates into CMOS circuit operating frequencies well into the GHz range, which covers the frequency range of many of today's popular wireless products, such as cell phones, GPS (Global Positioning System) and Bluetooth. Of course, the great interest in RF CMOS comes from the obvious advantages of CMOS technology in terms of production cost, high-level integration, and the ability to combine digital, analog and RF circuits on the same chip. This book discusses many of the challenges facing the CMOS RF circuit designer in terms of device modeling and characterization, which are crucial issues in circuit simulation and design.
Surface acoustic wave (SAW) devices are recognized for their versatility and efficiency in controlling and processing electrical signals. This has resulted in a multitude of device concepts for a wide range of signal processing functions, such as delay lines, filters, resonators, pulse compressors, convolvers, and many more. As SAW technology has found its way into mass market products such as TV receivers, pagers, keyless entry systems and cellular phones, the production volume has risen to millions of devices produced every day. At the other end of the scale, there are specialized high performance signal processing SAW devices for satellite communication and military applications, such as radar and electronic warfare. This volume, together with Volume 2, presents an overview of recent advances in SAW technology, systems and applications by some of the foremost researchers in this exciting field.
The steady downscaling of device-feature size combined with a rapid increase in circuit complexity as well as the introduction of new device concepts based on non-silicon-material systems poses great challenges for device and circuit designers. One of the major tasks is the development of new and improved device models needed for accurate device and circuit design. Another task is the development of new circuit-simulation tools to handle very large and complex circuits. This book addresses both these issues with up-to-date reviews written by leading experts in the field.The first three chapters of the book discuss advanced device models both for existing technologies and for new, emerging technologies. Among the topics covered are models for MOSFETs, thin-film transitors (TFTs), and compound semiconductor devices, including GaAs HEMTs and HFETs, heterodimensional devices, quantum-tunneling devices, as well as wide-bandgap devices. Chapters 4 and 5 discuss advanced circuit simulators that hold promise for handling circuits of much higher complexity than what is possible for typical state-of-the-art circuit simulators today.
Together with the internet site, this book is ideally suited for independent and remote study Web site is kept to date and guest educational institutions are invited to join in creating their own lab modules on different device aspects First such program Reputation of the authors who are leaders in the field of semiconductor electronics
The steady downscaling of device-feature size combined with a rapid increase in circuit complexity as well as the introduction of new device concepts based on non-silicon-material systems poses great challenges for device and circuit designers. One of the major tasks is the development of new and improved device models needed for accurate device and circuit design. Another task is the development of new circuit-simulation tools to handle very large and complex circuits. This book addresses both these issues with up-to-date reviews written by leading experts in the field.The first three chapters of the book discuss advanced device models both for existing technologies and for new, emerging technologies. Among the topics covered are models for MOSFETs, thin-film transitors (TFTs), and compound semiconductor devices, including GaAs HEMTs and HFETs, heterodimensional devices, quantum-tunneling devices, as well as wide-bandgap devices. Chapters 4 and 5 discuss advanced circuit simulators that hold promise for handling circuits of much higher complexity than what is possible for typical state-of-the-art circuit simulators today.
Bridges the gap between device modelling and analog circuit design. Includes dedicated software enabling actual circuit design. Covers the three significant models: BSIM3, Model 9 &, and EKV. Presents practical guidance on device development and circuit implementation. The authors offer a combination of extensive academic and industrial experience.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.