Ion Exchange Membranes A comprehensive introduction to the electro-membrane technologies of the future An ion exchange membrane is a polymer-based membrane which can be permeable by some ions in a solution while blocking others, making them ideal for processes such as water desalination, salt concentration control, clean production and—given their electrical conductivity—power generation and energy storage etc. Recent advances have given rise to new electro-membrane processes that promise drastically to expand the applications of this technology. Scientists in both research and industry will increasingly need to draw on these membranes in vital ways with strongly positive potential environmental impact. Ion Exchange Membranes summarizes recent research into these membranes and electro-membrane processes before moving to an overview of the historical background. It then attends in detail to cutting-edge fabrication technologies and the most recent areas of use. The result is a comprehensive introduction to the design, fabrication, and applications of these increasingly essential membranes. Ion Exchange Membranes readers will also find: In-depth treatment of industrial-scale applications Detailed discussion of topics including side-chain engineering, polyacylation, superacid-catalyst polymerization, and more Analysis of electro-membrane processes such as alkaline membrane water electrolysis, solar-driven water splitting, and many more Ion Exchange Membranes is ideal for membrane scientists, materials scientists, inorganic chemists, polymer chemists, and researchers and engineers in a variety of fields working with ion exchange membranes and electro-membrane processes.
This book is based on the project “Development and Validation of High Resolution Climate System Models” with the support of the National Key Basic Research Project under grant No. 2010CB951900. It demonstrates the major advances in the development of new, dynamical Atmospheric General Circulation Model (AGCM) and Ocean General Circulation Model (OGCM) cores that are suitable for high resolution modeling, the improvement of model physics, and the design of a flexible, multi-model ensemble coupling framework. It is a useful reference for graduate students, researchers and professionals working in the related areas of climate modeling and climate change. Prof. Rucong Yu works at the China Meteorological Administration; Prof. Tianjun Zhou works at LASG, the Institute of Atmospheric Physics, Chinese Academy of Sciences; Tongwen Wu works at Beijing Climate Center, China Meteorological Administration; Associate Prof. Wei Xue works at the Department of Computer Science and Technology, Tsinghua University; Prof. Guangqing Zhou works at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences.
This book explores event-based estimation problems. It shows how several stochastic approaches are developed to maintain estimation performance when sensors perform their updates at slower rates only when needed. The self-contained presentation makes this book suitable for readers with no more than a basic knowledge of probability analysis, matrix algebra and linear systems. The introduction and literature review provide information, while the main content deals with estimation problems from four distinct angles in a stochastic setting, using numerous illustrative examples and comparisons. The text elucidates both theoretical developments and their applications, and is rounded out by a review of open problems. This book is a valuable resource for researchers and students who wish to expand their knowledge and work in the area of event-triggered systems. At the same time, engineers and practitioners in industrial process control will benefit from the event-triggering technique that reduces communication costs and improves energy efficiency in wireless automation applications.
Reserves Estimation for Geopressured Gas Reservoirs aims to introduce the principles and methods for calculating reserves of geopressured gas reservoirs with the material balance method, presenting advantages, disadvantages and applicable conditions of various methods. The book, based on manual analysis, explains methods and calculation steps with more than 30 gas reservoir examples. It will help gas reservoir engineers learn basic principles and calculation methods and familiarize themselves with the content of the software Black Box, which in turn helps improve the level of gas field performance analysis and the level of gas field development. - Introduces 22 methods, such as the Hammerlindl method (1971), Ramagost-Farshad method (1981), Roach method (1981), Poston-Chen-Akhtar method (1994), Hedong Sun method (2019, 2020, 2021), et al - Offers "one-stop shopping" for the gas reservoir engineer on reserve estimation for geopressured gas reservoirs, including mathematical models, analyzing processes, analysis examples, and pros and cons - Suitable for the beginner, intermediate and advanced user who has a background in reservoir engineering - Provides a large number of examples about HPHT gas reservoirs - Reflects the combination, promotion and redevelopment of the gas reservoir engineering theory and field practice
Dynamic Description Technology of Fractured Vuggy Carbonate Gas Reservoirs delivers a critical reference to reservoir and production engineers on the basic characteristics of fractured vuggy gas reservoirs, combining both static and dynamic data to improve reservoir characterization accuracy and development. Based on the full lifecycle of well testing and advanced production decline analysis, this reference also details how to apply reservoir dynamic evaluation and reserve estimation and performance forecasting. Offering one collective location for the latest research on fractured gas reservoirs, this reference also covers physical models, analysis examples, and processes, 3D numerical well test technology, and deconvolution technology of production decline analysis. Packed with many calculation examples and more than 100 case studies, this book gives engineers a strong tool to further exploit these complex assets.
Ion Exchange Membranes A comprehensive introduction to the electro-membrane technologies of the future An ion exchange membrane is a polymer-based membrane which can be permeable by some ions in a solution while blocking others, making them ideal for processes such as water desalination, salt concentration control, clean production and—given their electrical conductivity—power generation and energy storage etc. Recent advances have given rise to new electro-membrane processes that promise drastically to expand the applications of this technology. Scientists in both research and industry will increasingly need to draw on these membranes in vital ways with strongly positive potential environmental impact. Ion Exchange Membranes summarizes recent research into these membranes and electro-membrane processes before moving to an overview of the historical background. It then attends in detail to cutting-edge fabrication technologies and the most recent areas of use. The result is a comprehensive introduction to the design, fabrication, and applications of these increasingly essential membranes. Ion Exchange Membranes readers will also find: In-depth treatment of industrial-scale applications Detailed discussion of topics including side-chain engineering, polyacylation, superacid-catalyst polymerization, and more Analysis of electro-membrane processes such as alkaline membrane water electrolysis, solar-driven water splitting, and many more Ion Exchange Membranes is ideal for membrane scientists, materials scientists, inorganic chemists, polymer chemists, and researchers and engineers in a variety of fields working with ion exchange membranes and electro-membrane processes.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.