WIDE BANDGAP NANOWIRES Comprehensive resource covering the synthesis, properties, and applications of wide bandgap nanowires This book presents first-hand knowledge on wide bandgap nanowires for sensor and energy applications. Taking a multidisciplinary approach, it brings together the materials science, physics and engineering aspects of wide bandgap nanowires, an area in which research has been accelerating dramatically in the past decade. Written by four well-qualified authors who have significant experience in the field, sample topics covered within the work include: Nanotechnology-enabled fabrication of wide bandgap nanowires, covering bottom-up, top-down and hybrid approaches Electrical, mechanical, optical, and thermal properties of wide bandgap nanowires, which are the basis for realizing sensor and energy device applications Measurement of electrical conductivity and fundamental electrical properties of nanowires Applications of nanowires, such as in flame sensors, biological sensors, and environmental monitoring For materials scientists, electrical engineers and professionals involved in the semiconductor industry, this book serves as a completely comprehensive resource to understand the topic of wide bandgap nanowires and how they can be successfully used in practical applications.
This book presents the fundamentals of the thermoelectrical effect in silicon carbide (SiC), including the thermoresistive, thermoelectric, thermocapacitive and thermoelectronic effects. It summarizes the growth of SiC, its properties and fabrication processes for SiC devices and introduces the thermoelectrical sensing theories in different SiC morphologies and polytypes. Further, it reviews the recent advances in the characterization of the thermoelectrical effect in SiC at high temperatures. Discussing several desirable features of thermoelectrical SiC sensors and recent developments in these sensors, the book provides useful guidance on developing high sensitivity and linearity, fast-response SiC sensing devices based on thermoelectrical effects.
This report identifies the driving forces for reforestation in three villages of Northern Vietnam. Using an institutional analysis focused on the rules governing upland access and use, the authors assess the relative impact of state policies (reforestation programs and forestland allocation) on land use change. Findings show that the latter are indirectly responsible for reforestation, but not because of the incentives they provided. Instead, they disrupted the local rules governing annual crop cultivation and grazing activities leading to the end of annual cropping. Tree plantation was chosen by farmers as a last resort option. Lessons learned highlight the importance of local level studies and collective rules for land management.
This book presents the fundamentals of the thermoelectrical effect in silicon carbide (SiC), including the thermoresistive, thermoelectric, thermocapacitive and thermoelectronic effects. It summarizes the growth of SiC, its properties and fabrication processes for SiC devices and introduces the thermoelectrical sensing theories in different SiC morphologies and polytypes. Further, it reviews the recent advances in the characterization of the thermoelectrical effect in SiC at high temperatures. Discussing several desirable features of thermoelectrical SiC sensors and recent developments in these sensors, the book provides useful guidance on developing high sensitivity and linearity, fast-response SiC sensing devices based on thermoelectrical effects.
WIDE BANDGAP NANOWIRES Comprehensive resource covering the synthesis, properties, and applications of wide bandgap nanowires This book presents first-hand knowledge on wide bandgap nanowires for sensor and energy applications. Taking a multidisciplinary approach, it brings together the materials science, physics and engineering aspects of wide bandgap nanowires, an area in which research has been accelerating dramatically in the past decade. Written by four well-qualified authors who have significant experience in the field, sample topics covered within the work include: Nanotechnology-enabled fabrication of wide bandgap nanowires, covering bottom-up, top-down and hybrid approaches Electrical, mechanical, optical, and thermal properties of wide bandgap nanowires, which are the basis for realizing sensor and energy device applications Measurement of electrical conductivity and fundamental electrical properties of nanowires Applications of nanowires, such as in flame sensors, biological sensors, and environmental monitoring For materials scientists, electrical engineers and professionals involved in the semiconductor industry, this book serves as a completely comprehensive resource to understand the topic of wide bandgap nanowires and how they can be successfully used in practical applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.