Ecosystem" is an intuitively appealing concept to most ecologists, but, in spite of its widespread use, the term remains diffuse and ambiguous. The authors of this book argue that previous attempts to define the concept have been derived from particular viewpoints to the exclusion of others equally possible. They offer instead a more general line of thought based on hierarchy theory. Their contribution should help to counteract the present separation of subdisciplines in ecology and to bring functional and population/community ecologists closer to a common approach. Developed as a way of understanding highly complex organized systems, hierarchy theory has at its center the idea that organization results from differences in process rates. To the authors the theory suggests an objective way of decomposing ecosystems into their component parts. The results thus obtained offer a rewarding method for integrating various schools of ecology.
The first edition of Toward a Unified Ecology was ahead of its time. For the second edition, the authors present a new synthesis of their core ideas on evaluating communities, organisms, populations, biomes, models, and management. The book now places greater emphasis on post-normal critiques, cognizant of ever-present observer values in the system. The problem it addresses is how to work holistically on complex things that cannot be defined, and this book continues to build an approach to the problem of scaling in ecosystems. Provoked by complexity theory, the authors add a whole new chapter on the central role of narrative in science and how models improve them. The book takes data and modeling seriously, with a sophisticated philosophy of science.
While environmentalists insist that lower rates of consumption of natural resources are essential for a sustainable future, many economists dismiss the notion that resource limits act to constrain modern, creative societies. The conflict between these views tinges political debate at all levels and hinders our ability to plan for the future. Supply-Side Sustainability offers a fresh approach to this dilemma by integrating ecological and social science approaches in an interdisciplinary treatment of sustainability. Written by two ecologists and an anthropologist, this book discusses organisms, landscapes, populations, communities, biomes, the biosphere, ecosystems and energy flows, as well as patterns of sustainability and collapse in human societies, from hunter-gatherer groups to empires to today's industrial world. These diverse topics are integrated within a new framework that translates the authors' advances in hierarchy and complexity theory into a form useful to professionals in science, government, and business. The result is a much-needed blueprint for a cost-effective management regime, one that makes problem-solving efforts themselves sustainable over time. The authors demonstrate that long-term, cost-effective resource management can be achieved by managing the contexts of productive systems, rather than by managing the commodities that natural systems produce.
According to astrophysical theory, magnetic fields should play an important role in the structure and dynamics of the interstellar medium. While astronomical observations confirm this directly, the observational record is sparse. This is because magnetic fields can only be measured via polarimetric methods, and most of these methods can only provide an indirect inference of the magnetic field strength. The Zeeman effect, however, is the only method by which in situ measurements of astrophysical magnetic fields can be made. The spectral signature of Zeeman splitting is imprinted in the circular polarization spectrum of radiation received from an astronomical source. In order to make a reliable detection at radio frequencies, one must employ careful calibrations and account for instrumental effects. We begin this dissertation by covering the fundamentals of radio spectropolarimetry. We then offer historical details regarding the Zeeman effect and its use in single-dish radio observations. We present an outline of how one accurately measures the Zeeman effect using large single-dish radio telescopes. We follow this with results from an assessment of the polarization properties of the 100 m Green Bank Telescope (GBT). We then present magnetic field detections made via the Zeeman effect from the Galactic scale to cosmological distances. We begin with GBT observations of 21 cm emission toward the Taurus Molecular Cloud (TMC) complex. Recent observations have suggested that fields stronger than 20 microgauss are located at the distance of the TMC. Our Zeeman observations rule out fields of this strength, but do show a clear +5 microgauss detection from HI emission at the velocity of the TMC. More surprisingly, we have discovered multiple detections of a line-of-sight magnetic field of strength roughly +40 microgauss in a filament near -50 km/s. We then present a windfall of detections of milligauss-strength magnetic fields in starburst galaxies. Detected by means of Zeeman splitting of 1667 MHz hydroxyl megamaser emission, these Arecibo and GBT results represent the first extragalactic Zeeman measurements to probe the field inside an external galaxy. Finally, we climb the cosmological distance ladder, and present a dramatic GBT detection of a magnetic field in a damped Lyman-alpha absorber at a redshift of 0.692. We discuss possible scenarios for the creation of an 84 microgauss field at a look-back time of 6.4 Gyr.
Approximately 15,000 entries dealing with ethnography, history, psychology, human biology and medicine of native peoples of North America. Includes published materials issued before and during 1972.
Approximately 15,000 entries dealing with ethnography, history, psychology, human biology and medicine of native peoples of North America. Includes published materials issued before and during 1972.
While environmentalists insist that lower rates of consumption of natural resources are essential for a sustainable future, many economists dismiss the notion that resource limits act to constrain modern, creative societies. The conflict between these views tinges political debate at all levels and hinders our ability to plan for the future. Supply-Side Sustainability offers a fresh approach to this dilemma by integrating ecological and social science approaches in an interdisciplinary treatment of sustainability. Written by two ecologists and an anthropologist, this book discusses organisms, landscapes, populations, communities, biomes, the biosphere, ecosystems and energy flows, as well as patterns of sustainability and collapse in human societies, from hunter-gatherer groups to empires to today's industrial world. These diverse topics are integrated within a new framework that translates the authors' advances in hierarchy and complexity theory into a form useful to professionals in science, government, and business. The result is a much-needed blueprint for a cost-effective management regime, one that makes problem-solving efforts themselves sustainable over time. The authors demonstrate that long-term, cost-effective resource management can be achieved by managing the contexts of productive systems, rather than by managing the commodities that natural systems produce.
A one-of-a-kind, quick-reference volume that offers a cohesive, coordinated plan for the diagnosis, management, and treatment of the fetal patient. A highly accessible resource for practitioners charged with the care of a fetus or neonate with a sonographically detected anomaly--and a trusted guide for prospective parents seeking advice regarding an abnormal fetal finding. Provides much-needed answers and an approach to managing the implications of fetal sonographic or chromosomal diagnosis beyond the existing boundaries of obstetrics, pediatrics, and surgery.
The first edition of Toward a Unified Ecology was ahead of its time. For the second edition, the authors present a new synthesis of their core ideas on evaluating communities, organisms, populations, biomes, models, and management. The book now places greater emphasis on post-normal critiques, cognizant of ever-present observer values in the system. The problem it addresses is how to work holistically on complex things that cannot be defined, and this book continues to build an approach to the problem of scaling in ecosystems. Provoked by complexity theory, the authors add a whole new chapter on the central role of narrative in science and how models improve them. The book takes data and modeling seriously, with a sophisticated philosophy of science.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.