Finally a book on Wireless Sensor Networks that covers real world applications and contains practical advice! Kuorilehto et al. have written the first practical guide to wireless sensor networks. The authors draw on their experience in the development and field-testing of autonomous wireless sensor networks (WSNs) to offer a comprehensive reference on fundamentals, practical matters, limitations and solutions of this fast moving research area. Ultra Low Energy Wireless Sensor Networks in Practice: Explains the essential problems and issues in real wireless sensor networks, and analyzes the most promising solutions. Provides a comprehensive guide to applications, functionality, protocols, and algorithms for WSNs. Offers practical experiences from new applications and their field-testing, including several deployed networks. Includes simulations and physical measurements for energy consumption, bit rate, latency, memory, and lifetime. Covers embedded resource-limited operating systems, middleware and application software. Ultra Low Energy Wireless Sensor Networks in Practice will prove essential reading for Research Scientists, advanced students in Networking, Electrical Engineering and Computer Science as well as Product Managers and Design Engineers.
Wireless sensor network (WSN) is an ad-hoc network technology comprising even thousands of autonomic and self-organizing nodes that combine environmental sensing, data processing, and wireless networking. The applications for sensor networks range from home and industrial environments to military uses. Unlike the traditional computer networks, a WSN is application-oriented and deployed for a specific task. WSNs are data centric, which means that messages are not send to individual nodes but to geographical locations or regions based on the data content. A WSN node is typically battery powered and characterized by extremely small size and low cost. As a result, the processing power, memory, and energy resources of an individual sensor node are limited. However, the feasibility of a WSN lies on the collaboration between the nodes. A reference WSN node comprises a Micro-Controller Unit (MCU) having few Million Instructions Per Second (MIPS) processing speed, tens of kilobytes program memory, few kilobytes data memory. In addition, the node contains a short-range radio, and a set of sensors. Supply power is typically obtained with small batteries. Assuming a target lifetime of one year using AA-size batteries, the available power budget is around 1 mW. This book covers the low-power WSNs services ranging from hardware platforms and communication protocols to network deployment, and sensor data collection and actuation. The implications of resource constraints and expected performance in terms of throughput, reliability and latency are explained. As a case study, this book presents experiments with low-energy TUTWSN technology to illustrate the possibilities and limitations of WSN applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.