Clinical cases are a key component in modern medical education, assisting the trainee or recertifying clinician to work through unusual cases using best practice techniques. Dermatology is an important discipline in this regard since it is a highly visual subject requiring the reader to describe often very subtle differences in the presentation of patients and define accurately the diagnostic and management criteria to base their clinical decision-making on. This is particularly the case in the field of psychocutaneous disease where scientific advances are shedding new light on the understanding and treatment of long-recognized conditions located at the interface of dermatology and psychiatry. Psychodermatology covers all aspects of how the mind and body interact in relation to the onset and progression of various skin disorders.
While thin film technology has benefited greatly from artificial intelligence (AI) and machine learning (ML) techniques, there is still much to be learned from a full-scale exploration of these technologies in atomic layer deposition (ALD). This book provides in-depth information regarding the application of ML-based modeling techniques in thin film technology as a standalone approach and integrated with the classical simulation and modeling methods. It is the first of its kind to present detailed information regarding approaches in ML-based modeling, optimization, and prediction of the behaviors and characteristics of ALD for improved process quality control and discovery of new materials. As such, this book fills significant knowledge gaps in the existing resources as it provides extensive information on ML and its applications in film thin technology. Offers an in-depth overview of the fundamentals of thin film technology, state-of-the-art computational simulation approaches in ALD, ML techniques, algorithms, applications, and challenges. Establishes the need for and significance of ML applications in ALD while introducing integration approaches for ML techniques with computation simulation approaches. Explores the application of key techniques in ML, such as predictive analysis, classification techniques, feature engineering, image processing capability, and microstructural analysis of deep learning algorithms and generative model benefits in ALD. Helps readers gain a holistic understanding of the exciting applications of ML-based solutions to ALD problems and apply them to real-world issues. Aimed at materials scientists and engineers, this book fills significant knowledge gaps in existing resources as it provides extensive information on ML and its applications in film thin technology. It also opens space for future intensive research and intriguing opportunities for ML-enhanced ALD processes, which scale from academic to industrial applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.