Stochastic local search (SLS) algorithms are among the most prominent and successful techniques for solving computationally difficult problems. Offering a systematic treatment of SLS algorithms, this book examines the general concepts and specific instances of SLS algorithms and considers their development, analysis and application.
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.
This book is the first comprehensive tutorial on matheuristics. Matheuristics are based on mathematical extensions of previously known heuristics, mainly metaheuristics, and on original, area-specific approaches. This tutorial provides a detailed discussion of both contributions, presenting the pseudocodes of over 40 algorithms, abundant literature references, and for each case a step-by-step description of a sample run on a common Generalized Assignment Problem example. C++ source codes of all algorithms are available in an associated SW repository.
Stochastic local search (SLS) algorithms are among the most prominent and successful techniques for solving computationally difficult problems. Offering a systematic treatment of SLS algorithms, this book examines the general concepts and specific instances of SLS algorithms and considers their development, analysis and application.
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.
This book is the first comprehensive tutorial on matheuristics. Matheuristics are based on mathematical extensions of previously known heuristics, mainly metaheuristics, and on original, area-specific approaches. This tutorial provides a detailed discussion of both contributions, presenting the pseudocodes of over 40 algorithms, abundant literature references, and for each case a step-by-step description of a sample run on a common Generalized Assignment Problem example. C++ source codes of all algorithms are available in an associated SW repository.
Stochastic local search (SLS) algorithms are established tools for the solution of computationally hard problems arising in computer science, business adm- istration, engineering, biology, and various other disciplines. To a large extent, their success is due to their conceptual simplicity, broad applicability and high performance for many important problems studied in academia and enco- tered in real-world applications. SLS methods include a wide spectrum of te- niques, ranging from constructive search procedures and iterative improvement algorithms to more complex SLS methods, such as ant colony optimization, evolutionary computation, iterated local search, memetic algorithms, simulated annealing, tabu search, and variable neighborhood search. Historically, the development of e?ective SLS algorithms has been guided to a large extent by experience and intuition. In recent years, it has become - creasingly evident that success with SLS algorithms depends not merely on the adoption and e?cient implementation of the most appropriate SLS technique for a given problem, but also on the mastery of a more complex algorithm - gineering process. Challenges in SLS algorithm development arise partly from the complexity of the problems being tackled and in part from the many - grees of freedom researchers and practitioners encounter when developing SLS algorithms. Crucial aspects in the SLS algorithm development comprise al- rithm design, empirical analysis techniques, problem-speci?c background, and background knowledge in several key disciplines and areas, including computer science, operations research, arti?cial intelligence, and statistics.
This volume constitutes the refereed proceedings of the International Workshop on Engineering Stochastic Local Search Algorithms. Inside the volume, readers will find twelve full papers as well as nine short papers. Topics include methodological developments, behavior of SLS algorithms, search space analysis, algorithm performance, tuning procedures, AI/OR techniques, and dynamic behavior.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.