An updated guide to the most current information available for determining how to use NMR spectroscopy to differentiate chiral compounds Differentiation of Chiral Compounds Using NMR Spectroscopy offers a thoroughly revised second edition to the essential volume that puts the focus on the chiral systems that are commercially available and have been widely vetted for use in NMR spectroscopy. The text covers a broad range of reagents that make it possible to determine the enantiomeric purity and assign the absolute configuration of many classes of compounds. Comprehensive in scope, the text describes the chiral NMR differentiating agents as derivatizing agents, solvating agents, metal-based reagents and liquid crystals and gels, and explains the range and types of compounds for which they can be used for analysis. New to this edition are the most recent findings in the field as well as the development of advanced NMR measurement techniques that allow for the simplification of complex spectra resulting in more readily identified enantiodifferentiation. This important resource: Includes the most recent coverage of a large range of compounds that can be analyzed using chiral NMR reagents Explores the use of chiral NMR reagents and explains their relationship to the stereochemistry of the analyzed molecules Offers the essential information needed to help decide which method is the best NMR method to apply to a class or molecules Contains experimental strategies for using the reagents that are likely to improve the quality of the results Differentiation of Chiral Compounds Using NMR Spectroscopy is a comprehensive guide designed for investigators planning to use NMR spectroscopy to determine enantiomeric purity or assign the absolute configuration of a compound.
A comprehensive overview of the use of NMR spectroscopy for chiral discrimination Discrimination of Chiral Compounds Using NMR Spectroscopy concisely covers the broad array of reagents that make it possible to determine the optical purity and assign the absolute configuration of many classes of compounds. It describes chiral NMR derivatizing agents, solvating agents, metal-based reagents, and liquid crystals and discusses the range and types of compounds for which they can be used for analysis. After an overview of chiral reagents and methodologies, this reference: * Includes comprehensive coverage of the chiral reagents that have been reported * Catalogs the range of compounds for which different reagents have been shown to be effective * Includes specialty categories such as liquid crystals, ionic liquids, and the formation of chiral aggregates from achiral building blocks that do not fit into the broader categories * Offers experimental strategies for using the reagents that are likely to improve the quality of the results This guide describes the various systems and their overall utility, but goes further to show the full scope of the field as a way of guiding investigations into the optimal chiral reagents for use in NMR spectroscopy. It's a practical reference for organic chemists in the pharmaceutical industry, academia, and other areas, NMR spectroscopists, and researchers involved in the isolation and structure determination of natural products.
Managing a successful transition of the current energy supply system to less carbon emitting options, ensuring a safe and secure supply during the whole process and in the long term, is one of the largest challenges of our time. Various approaches and first implementations show that it is not only technological issue, but also a matter of societal acceptance and acceptability, considering basic ethic values of the society. The main foci of the book are, thus, to develop an understanding about the specific challenges of the scientific policy advice in the area, to explore typical current approaches for the analysis of future energy systems and to develop criteria for the quality assessment and guidelines for the improvement of such studies. The book provides assistance to the interpretation of existing studies and guidelines for setting up and carrying out new analyses as well as for communicating and applying the results. Thereby, it aims to support the involved actors such as the respective scientific experts and researchers as well as decision makers, energy suppliers, stakeholders and the interested public in designing procedures for a successful transition process. The study elaborates consistent interdisciplinary advice as contribution for realising a continuously safe and secure, long-term viable energy supply in spite of diverse interests, multi-level responsibilities, multi-dimensional processes, large uncertainties and lack of knowledge about future developments.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.