Recent years have seen silicon integrated circuits enter into an increasing number of technical and consumer applications, until they now affect everyday life, as well as technical areas. Polycrystalline silicon has been an important component of silicon technology for nearly two decades, being used first in MOS integrated circuits and now becoming pervasive in bipolar circuits, as well. During this time a great deal of informa tion has been published about polysilicon. A wide range of deposition conditions has been used to form films exhibiting markedly different properties. Seemingly contradictory results can often be explained by considering the details of the structure formed. This monograph is an attempt to synthesize much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon so that it can be used most effectively to enhance device and integrated-circuit perfor mance. As device performance improves, however, some of the proper ties of polysilicon are beginning to restrict the overall performance of integrated circuits, and the basic limitations of the properties of polysili con also need to be better understood to minimize potential degradation of circuit behavior.
Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition presents much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon. By properly understanding the properties of polycrystalline silicon and their relation to the deposition conditions, polysilicon can be designed to ensure optimum device and integrated-circuit performance. Polycrystalline silicon has played an important role in integrated-circuit technology for two decades. It was first used in self-aligned, silicon-gate, MOS ICs to reduce capacitance and improve circuit speed. In addition to this dominant use, polysilicon is now also included in virtually all modern bipolar ICs, where it improves the basic physics of device operation. The compatibility of polycrystalline silicon with subsequent high-temperature processing allows its efficient integration into advanced IC processes. This compatibility also permits polysilicon to be used early in the fabrication process for trench isolation and dynamic random-access-memory (DRAM) storage capacitors. In addition to its integrated-circuit applications, polysilicon is becoming vital as the active layer in the channel of thin-film transistors in place of amorphous silicon. When polysilicon thin-film transistors are used in advanced active-matrix displays, the peripheral circuitry can be integrated into the same substrate as the pixel transistors. Recently, polysilicon has been used in the emerging field of microelectromechanical systems (MEMS), especially for microsensors and microactuators. In these devices, the mechanical properties, especially the stress in the polysilicon film, are critical to successful device fabrication. Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition is an invaluable reference for professionals and technicians working with polycrystalline silicon in the integrated circuit and display industries.
Recent years have seen silicon integrated circuits enter into an increasing number of technical and consumer applications, until they now affect everyday life, as well as technical areas. Polycrystalline silicon has been an important component of silicon technology for nearly two decades, being used first in MOS integrated circuits and now becoming pervasive in bipolar circuits, as well. During this time a great deal of informa tion has been published about polysilicon. A wide range of deposition conditions has been used to form films exhibiting markedly different properties. Seemingly contradictory results can often be explained by considering the details of the structure formed. This monograph is an attempt to synthesize much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon so that it can be used most effectively to enhance device and integrated-circuit perfor mance. As device performance improves, however, some of the proper ties of polysilicon are beginning to restrict the overall performance of integrated circuits, and the basic limitations of the properties of polysili con also need to be better understood to minimize potential degradation of circuit behavior.
Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition presents much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon. By properly understanding the properties of polycrystalline silicon and their relation to the deposition conditions, polysilicon can be designed to ensure optimum device and integrated-circuit performance. Polycrystalline silicon has played an important role in integrated-circuit technology for two decades. It was first used in self-aligned, silicon-gate, MOS ICs to reduce capacitance and improve circuit speed. In addition to this dominant use, polysilicon is now also included in virtually all modern bipolar ICs, where it improves the basic physics of device operation. The compatibility of polycrystalline silicon with subsequent high-temperature processing allows its efficient integration into advanced IC processes. This compatibility also permits polysilicon to be used early in the fabrication process for trench isolation and dynamic random-access-memory (DRAM) storage capacitors. In addition to its integrated-circuit applications, polysilicon is becoming vital as the active layer in the channel of thin-film transistors in place of amorphous silicon. When polysilicon thin-film transistors are used in advanced active-matrix displays, the peripheral circuitry can be integrated into the same substrate as the pixel transistors. Recently, polysilicon has been used in the emerging field of microelectromechanical systems (MEMS), especially for microsensors and microactuators. In these devices, the mechanical properties, especially the stress in the polysilicon film, are critical to successful device fabrication. Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition is an invaluable reference for professionals and technicians working with polycrystalline silicon in the integrated circuit and display industries.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.