The hydrogen bond represents an important interaction between molecules, and the dynamics of hydrogen bonds in water create an ever-present question associated with the process of chemical and biological reactions. In spite of numerous studies, the process remains poorly understood at the microscopic level because hydrogen-bond dynamics, such as bond rearrangements and hydrogen/proton transfer reactions, are extremely difficult to probe. Those studies have been carried out by means of spectroscopic methods where the signal stems from the ensemble of a system and the hydrogen-bond dynamics were inferred indirectly. This book addresses the direct imaging of hydrogen-bond dynamics within water-based model systems assembled on a metal surface, using a scanning tunneling microscope (STM). The dynamics of individual hydrogen bonds in water clusters, hydroxyl clusters, and water-hydroxyl complexes are investigated in conjunction with density functional theory. In these model systems, quantum dynamics of hydrogen bonds, such as tunneling and zero-point nuclear motion, are observed in real space. Most notably, hydrogen atom relay reactions, which are frequently invoked across many fields of chemistry, are visualized and controlled by STM. This work presents a means of studying hydrogen-bond dynamics at the single-molecule level, providing an important contribution to wide fields beyond surface chemistry.
In these lecture notes, we will analyze the behavior of random walk on disordered media by means of both probabilistic and analytic methods, and will study the scaling limits. We will focus on the discrete potential theory and how the theory is effectively used in the analysis of disordered media. The first few chapters of the notes can be used as an introduction to discrete potential theory. Recently, there has been significant progress on the theory of random walk on disordered media such as fractals and random media. Random walk on a percolation cluster(‘the ant in the labyrinth’)is one of the typical examples. In 1986, H. Kesten showed the anomalous behavior of a random walk on a percolation cluster at critical probability. Partly motivated by this work, analysis and diffusion processes on fractals have been developed since the late eighties. As a result, various new methods have been produced to estimate heat kernels on disordered media. These developments are summarized in the notes.
This book develops limit theorems for a natural class of long range random walks on finitely generated torsion free nilpotent groups. The limits in these limit theorems are Lévy processes on some simply connected nilpotent Lie groups. Both the limit Lévy process and the limit Lie group carrying this process are determined by and depend on the law of the original random walk. The book offers the first systematic study of such limit theorems involving stable-like random walks and stable limit Lévy processes in the context of (non-commutative) nilpotent groups.
The role of engineering communities in taking Japan from a defeated war machine into a peacetime technology leader. Naval, aeronautic, and mechanical engineers played a powerful part in the military buildup of Japan in the early and mid-twentieth century. They belonged to a militaristic regime and embraced the importance of their role in it. Takashi Nishiyama examines the impact of war and peace on technological transformation during the twentieth century. He is the first to study the paradoxical and transformative power of Japan’s defeat in World War II through the lens of engineering. Nishiyama asks: How did authorities select and prepare young men to be engineers? How did Japan develop curricula adequate to the task (and from whom did the country borrow)? Under what conditions? What did the engineers think of the planes they built to support Kamikaze suicide missions? But his study ultimately concerns the remarkable transition these trained engineers made after total defeat in 1945. How could the engineers of war machines so quickly turn to peaceful construction projects such as designing the equipment necessary to manufacture consumer products? Most important, they developed new high-speed rail services, including the Shinkansen Bullet Train. What does this change tell us not only about Japan at war and then in peacetime but also about the malleability of engineering cultures? Nishiyama aims to counterbalance prevalent Eurocentric/Americentric views in the history of technology. Engineering War and Peace in Modern Japan, 1868–1964 sets the historical experience of one country’s technological transformation in a larger international framework by studying sources in six different languages: Chinese, English, French, German, Japanese, and Spanish. The result is a fascinating read for those interested in technology, East Asia, and international studies. Nishiyama's work offers lessons to policymakers interested in how a country can recover successfully after defeat.
Gate Dielectrics and MOS ULSIs provides necessary and sufficient information for those who wish to know well and go beyond the conventional SiO2 gate dielectric. The topics particularly focus on dielectric films satisfying the superior quality needed for gate dielectrics even in large-scale integration. And since the quality requirements are rather different between device applications, they are selected in an applicatipn-oriented manner, e.g., conventional SiO2 used in CMOS logic circuits, nitrided oxides, which recently became indispensable for flash memories, and composite ONO and ferroelectric films for passive capacitors used in DRAM applications. The book also covers issues common to all gate dielectrics, such as MOSFET physics, evaluation, scaling, and device application/integration for successful development. The information is as up to date as possible, especially for nanometer-range ultrathin gate-dielectric films indispensible in submicrometer ULSIs. The text together with abundant illustrations will take even the inexperienced reader up to the present high state of the art. It is the first book presenting nitrided gate oxides in detail.
Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices.This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features.
There are numerous elaborate and comprehensive textbooks and guidelines on stroke. However, busy clinicians are constantly bombarded with new knowledge for an infinite number of medical conditions. It becomes a challenge for them to tease out the important information that will help guide them through the care of the patient they have right before them. This handbook is thus conceptualized with both the busy clinician and the stroke patient needing urgent treatment in mind. By providing only essential information in a standard and user-friendly layout, it assists clinicians in making real-time decisions quickly and effectively with actual step-by-step guides on specific issues relevant to the care of stroke patients.The use of this practical handbook is instinctive with the topics arranged in chronological order, simulating the actual clinical scenario from a prehospital setting, consultation in the emergency room, admission to the hospital, to secondary prevention in the clinic. With contributions from over 30 stroke experts in Southeast Asia, this handbook is widely applicable in different medical settings and will certainly appeal to stroke specialists, general practitioners, nurses, paramedics, and medical students alike.
Optical disc industry is one of the successful businesses in the world, and huge amounts of discs and drives have been spread all over the world. More than a billion discs are produced and distributed every year. Since the ?rst optical discs – Laser Discs and Compact Discs (CD) – were shipped in the early 1980s, they have rapidly dominated the world music market, and DVDs will replace the video-tape market in the near future. The optical disc and drive technologies consist of the most advanced and integrated systems with regard to optics, physics, chemistry, mathematics, electronics, mechanics and related subjects; a huge number of scientists and engineers have engaged in the research and development of the systems. One of the key factors of the development of the optical disc systems, of course, results in the availability of cheap, stable, and reliable semiconductor laser units. Now, you can store data up to 4. 7GB on a single side of the 12-cm DVD, and in the near future, blue laser technology will allow storage of more than 20GB on the same size disc. We should not however forget the other core technologies such as focusing the beam on the surface of a spinning disc precisely, and encoding and decoding digital data. The data capacity of optical discs has increased from 0. 65GB to 25GB by the year 2003, and we certainly believe it will continue to increase with new technologies.
The hydrogen bond represents an important interaction between molecules, and the dynamics of hydrogen bonds in water create an ever-present question associated with the process of chemical and biological reactions. In spite of numerous studies, the process remains poorly understood at the microscopic level because hydrogen-bond dynamics, such as bond rearrangements and hydrogen/proton transfer reactions, are extremely difficult to probe. Those studies have been carried out by means of spectroscopic methods where the signal stems from the ensemble of a system and the hydrogen-bond dynamics were inferred indirectly. This book addresses the direct imaging of hydrogen-bond dynamics within water-based model systems assembled on a metal surface, using a scanning tunneling microscope (STM). The dynamics of individual hydrogen bonds in water clusters, hydroxyl clusters, and water-hydroxyl complexes are investigated in conjunction with density functional theory. In these model systems, quantum dynamics of hydrogen bonds, such as tunneling and zero-point nuclear motion, are observed in real space. Most notably, hydrogen atom relay reactions, which are frequently invoked across many fields of chemistry, are visualized and controlled by STM. This work presents a means of studying hydrogen-bond dynamics at the single-molecule level, providing an important contribution to wide fields beyond surface chemistry.
This book develops limit theorems for a natural class of long range random walks on finitely generated torsion free nilpotent groups. The limits in these limit theorems are Lévy processes on some simply connected nilpotent Lie groups. Both the limit Lévy process and the limit Lie group carrying this process are determined by and depend on the law of the original random walk. The book offers the first systematic study of such limit theorems involving stable-like random walks and stable limit Lévy processes in the context of (non-commutative) nilpotent groups.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.