This book is a collection of original papers on microlocal analysis, Fourier analysis in the complex domain, generalized functions and related topics. Most of the papers originate from the talks given at the conference OC Prospects of Generalized FunctionsOCO (in November, 2001 at RIMS, Kyoto). Reflecting the fact that the papers, except M Morimoto''s one, are dedicated to Mitsuo Morimoto, the subjects considered in this book are interdisciplinary, just as Morimoto''s works are. The historical backgrounds of the subjects are also discussed in depth in some contributions. Thus, this book should be valuable not only to the specialists in the fields, but also to those who are interested in the history of modern mathematics such as distributions and hyperfunctions.
Based on a seminar sponsored by the Institute for Advanced Study in 1977-1978, this set of papers introduces micro-local analysis concisely and clearly to mathematicians with an analytical background. The papers treat the theory of microfunctions and applications such as boundary values of elliptic partial differential equations, propagation of singularities in the vicinity of degenerate characteristics, holonomic systems, Feynman integrals from the hyperfunction point of view, and harmonic analysis on Lie groups.
The use of algebraic methods for studying analysts is an important theme in modern mathematics. The most significant development in this field is microlocal analysis, that is, the local study of differential equations on cotangent bundles. This treatise provides a thorough description of microlocal analysis starting from its foundations. The book begins with the definition of a hyperfunction. It then carefully develops the microfunction theory and its applications to differential equations and theoretical physics. It also provides a description of microdifferential equations, the microlocalization of linear differential equations. Finally, the authors present the structure theorems for systems of microdifferential equations, where the quantized contact transformations are used as a fundamental device. The microfunction theory, together with the quantized contact transformation theory, constitutes a valuable new viewpoint in linear partial differential equations. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Histories of remote islands around Japan are usually told through the prism of territorial disputes. In contrast, Takahiro Yamamoto contends that the transformation of the islands from ambiguous border zones to a territorialized space emerged out of multilateral power relations. Sakhalin, the Kuril Islands, Tsushima, the Bonin Islands, and the Ryukyu Islands became the subject of inter-imperial negotiations during the formative years of modern Japan as empires nudged each other to secure their status with minimal costs rather than fighting a territorial scramble. Based on multiarchival, multilingual research, Demarcating Japan argues that the transformation of border islands should be understood as an interconnected process, where inter-local referencing played a key role in the outcome: Japan’s geographical expansion in the face of domineering Extra-Asian empires.
In the near future, many parts of the world will suffer from a shortage of freshwater. Effective use of seawater in concrete production could therefore become a crucial technology. Seawater in Concrete Mix provides a detailed overview of the fundamental knowledge of concrete engineering that is essential for the usage of seawater-mixed concrete. According to the worldwide standard for reinforced concrete (RC), freshwater is typically used in concrete mixing rather than seawater. Yet a potential exists for the extensive use of seawater in concrete, especially with the addition of ground granulated blast-furnace slag, fly ash, or other mineral admixtures. The recent trend toward performance-based design makes this alternative more viable. The text is ideal for graduate students, researchers, concrete engineers, and all civil engineers who deal with concrete for infrastructure. Hidenori Hamada is Professor of Kyushu University, Japan. Nobuaki Otsuki is Professor Emeritus of Tokyo Institute of Technology and was Chairman of the JCI Technical Committee on the use of seawater in concrete. Takahiro Nishida is Senior Researcher of the Japanese National Institute of Maritime, Port and Aviation Technology.
This thesis presents a general theory of nonequilibrium thermodynamics for information processing. Ever since Maxwell's demon was proposed in the nineteenth century, the relationship between thermodynamics and information has attracted much attention because it concerns the foundation of the second law of thermodynamics. From the modern point of view, Maxwell's demon is formulated as an information processing device that performs measurement and feedback at the level of thermal fluctuations. By unifying information theory, measurement theory, and the recently developed theory of nonequilibrium statistical mechanics, the author has constructed a theory of "information thermodynamics," in which information contents and thermodynamic variables are treated on an equal footing. In particular, the maximum work that can be extracted by the demon and the minimum work that is needed for measurement and information erasure by the demon has been determined. Additionally, generalizations of nonequilibrium relations such as a Jarzynski equality for classical stochastic systems in the presence of feedback control have been derived. One of the generalized equalities has recently been verified experimentally by using sub-micron colloidal particles. The results obtained serve as fundamental principles for information processing in small thermodynamic systems, and are applicable to nanomachines and nanodevices.
Do you aspire for more than what society had intended for you? Do you want to be a better leader? Do you need a role model? We often read books about the principles of leadership, about leaders who don’t look like us or have not been through our life experiences. Most leadership books are written after the fact, when the subject has retired or has reached the pinnacle of their career. What if we could read a book about leadership in action to see the tools, techniques, mindsets and strategies leaders are using on their journey to the summit of their careers? Nine Leaders in Action does just that. We profile a range of leaders from around the world, who have already achieved great success, yet remain on the path to even greater heights. Nine people who overcame adversity to achieve notable successes and have far bigger goals in mind. Read how they do it. Role model their best practices. Don't give up and don't lower your ambitions. The world needs your leadership.
The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.
The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painlevé equations of the Noumi–Yamada type and to the analysis of non-adiabatic transition probability problems in three levels. As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary.
This volume contains 23 articles on algebraic analysis of differential equations and related topics, most of which were presented as papers at the conference "Algebraic Analysis of Differential Equations – from Microlocal Analysis to Exponential Asymptotics" at Kyoto University in 2005. This volume is dedicated to Professor Takahiro Kawai, who is one of the creators of microlocal analysis and who introduced the technique of microlocal analysis into exponential asymptotics.
Based on a seminar sponsored by the Institute for Advanced Study in 1977-1978, this set of papers introduces micro-local analysis concisely and clearly to mathematicians with an analytical background. The papers treat the theory of microfunctions and applications such as boundary values of elliptic partial differential equations, propagation of singularities in the vicinity of degenerate characteristics, holonomic systems, Feynman integrals from the hyperfunction point of view, and harmonic analysis on Lie groups.
The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painlevé equations of the Noumi–Yamada type and to the analysis of non-adiabatic transition probability problems in three levels. As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary.
The use of algebraic methods for studying analysts is an important theme in modern mathematics. The most significant development in this field is microlocal analysis, that is, the local study of differential equations on cotangent bundles. This treatise provides a thorough description of microlocal analysis starting from its foundations. The book begins with the definition of a hyperfunction. It then carefully develops the microfunction theory and its applications to differential equations and theoretical physics. It also provides a description of microdifferential equations, the microlocalization of linear differential equations. Finally, the authors present the structure theorems for systems of microdifferential equations, where the quantized contact transformations are used as a fundamental device. The microfunction theory, together with the quantized contact transformation theory, constitutes a valuable new viewpoint in linear partial differential equations. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book is a collection of original papers on microlocal analysis, Fourier analysis in the complex domain, generalized functions and related topics. Most of the papers originate from the talks given at the conference OC Prospects of Generalized FunctionsOCO (in November, 2001 at RIMS, Kyoto). Reflecting the fact that the papers, except M Morimoto''s one, are dedicated to Mitsuo Morimoto, the subjects considered in this book are interdisciplinary, just as Morimoto''s works are. The historical backgrounds of the subjects are also discussed in depth in some contributions. Thus, this book should be valuable not only to the specialists in the fields, but also to those who are interested in the history of modern mathematics such as distributions and hyperfunctions.
The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.