This book introduces transdermal drug delivery and the developments that have taken place in various transdermal drug delivery techniques including the system-level design approach of a novel miniaturized medical device to offer precise and painless drug delivery via a skin-based transdermal route. It discusses the microelectromechanical systems (MEMS)-based fabrication technique and the design, fabrication and characterization of different MEMS-based components like microneedles and micropumps. It further includes a MEMS-based component micropump with design, analysis, fabrication and characterization of the transdermal drug delivery device and challenges encountered in the design improvements. Features: Summarizes transdermal drug delivery systems especially with a focus on MEMS and microneedles, including theoretical concepts Emphasizes system integration by describing simulation and design techniques as well as experimental fabrication Discusses system-level integration for miniaturized therapeutic devices Includes working simulation models covering microneedles and micropump analysis Explores future direction in development of pertinent devices. The book is aimed at researchers, professionals, and graduate students in biomedical engineering, microelectronics, micro-electro-mechanical-systems, and drug delivery.
This book continues as volume 2 of a multi-compendium on Edible Medicinal and Non-Medicinal Plants. It covers edible fruits/seeds used fresh or processed, as vegetables, spices, stimulants, pulses, edible oils and beverages. It encompasses species from the following families: Clusiaceae, Combretaceae, Cucurbitaceae, Dilleniaceae, Ebenaceae, Euphorbiaceae, Ericaceae and Fabaceae. This work will be of significant interest to scientists, researchers, medical practitioners, pharmacologists, ethnobotanists, horticulturists, food nutritionists, agriculturists, botanists, herbalogists, conservationists, teachers, lecturers, students and the general public. Topics covered include: taxonomy (botanical name and synonyms); common English and vernacular names; origin and distribution; agro-ecological requirements; edible plant part and uses; botany; nutritive and medicinal/pharmacological properties, medicinal uses and current research findings; non-edible uses; and selected/cited references.
This book continues as volume 4 of a multi-compendium on Edible Medicinal and Non-Medicinal Plants. It covers edible fruits/seeds used fresh or processed, as vegetables, spices, stimulants, edible oils and beverages. It encompasses selected species from the following families: Fagaceae, Grossulariaceae, Hypoxidaxeae, Myrsinaceae Olacaceae, Oleaceae, Orchidaceae, Oxalidaceae, Pandanaceae, Passifloraceae, Pedaliaceae, Phyllanthaceae, Pinaceae, Piperaceae, Rosaceae and Rutaceae . This work will be of significant interest to scientists, researchers, medical practitioners, pharmacologists, ethnobotanists, horticulturists, food nutritionists, agriculturists, botanists, conservationists, lecturers, students and the general public. Topics covered include: taxonomy; common/English and vernacular names; origin and distribution; agroecology; edible plant parts and uses; botany; nutritive and pharmacological properties, medicinal uses and research findings; nonedible uses; and selected references.
A step-by-step guide to parallelizing cem codes The future of computational electromagnetics is changing drastically as the new generation of computer chips evolves from single-core to multi-core. The burden now falls on software programmers to revamp existing codes and add new functionality to enable computational codes to run efficiently on this new generation of multi-core CPUs. In this book, you'll learn everything you need to know to deal with multi-core advances in chip design by employing highly efficient parallel electromagnetic code. Focusing only on the Method of Moments (MoM), the book covers: In-Core and Out-of-Core LU Factorization for Solving a Matrix Equation A Parallel MoM Code Using RWG Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers A Parallel MoM Code Using Higher-Order Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers Turning the Performance of a Parallel Integral Equation Solver Refinement of the Solution Using the Conjugate Gradient Method A Parallel MoM Code Using Higher-Order Basis Functions and Plapack-Based In-Core and Out-of-Core Solvers Applications of the Parallel Frequency Domain Integral Equation Solver Appendices are provided with detailed information on the various computer platforms used for computation; a demo shows you how to compile ScaLAPACK and PLAPACK on the Windows® operating system; and a demo parallel source code is available to solve the 2D electromagnetic scattering problems. Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain is indispensable reading for computational code designers, computational electromagnetics researchers, graduate students, and anyone working with CEM software.
An analysis of the physics of multiantenna systems Multiple-Input Multiple-Output (MIMO) technology is one of the current hot topics in emerging wireless technologies. This book fills the important need for an authoritative reference on the merits of MIMO systems based on physics and provides a sound theoretical basis for its practical implementation. The book also addresses the important issues related to broadband adaptive processing. Written by three internationally known researchers, Physics of Multiantenna Systems and Broadband Processing: Provides a thorough discussion of the physical and mathematical principles involved in MIMO and adaptive systems Examines the electromagnetic framework of wireless communications systems Uses Maxwell's theory to provide a system-based framework for the abstract concept of channel capacity Performs various numerical simulations to observe how a typical system will behave in practice Provides a mathematical formulation for broadband adaptive processing and direction-of-arrival estimation using real antenna arrays Integrates signal processing and electromagnetics to address the performance of realistic multiantenna systems With Physics of Multiantenna Systems and Broadband Processing, communication systems engineers, graduate students, researchers, and developers will gain a thorough, scientific understanding of this important new technology.
Important new insights into how various components and systems evolved Premised on the idea that one cannot know a science without knowing its history, History of Wireless offers a lively new treatment that introduces previously unacknowledged pioneers and developments, setting a new standard for understanding the evolution of this important technology. Starting with the background-magnetism, electricity, light, and Maxwell's Electromagnetic Theory-this book offers new insights into the initial theory and experimental exploration of wireless. In addition to the well-known contributions of Maxwell, Hertz, and Marconi, it examines work done by Heaviside, Tesla, and passionate amateurs such as the Kentucky melon farmer Nathan Stubblefield and the unsung hero Antonio Meucci. Looking at the story from mathematical, physics, technical, and other perspectives, the clearly written text describes the development of wireless within a vivid scientific milieu. History of Wireless also goes into other key areas, including: The work of J. C. Bose and J. A. Fleming German, Japanese, and Soviet contributions to physics and applications of electromagnetic oscillations and waves Wireless telegraphic and telephonic development and attempts to achieve transatlantic wireless communications Wireless telegraphy in South Africa in the early twentieth century Antenna development in Japan: past and present Soviet quasi-optics at near-mm and sub-mm wavelengths The evolution of electromagnetic waveguides The history of phased array antennas Augmenting the typical, Marconi-centered approach, History of Wireless fills in the conventionally accepted story with attention to more specific, less-known discoveries and individuals, and challenges traditional assumptions about the origins and growth of wireless. This allows for a more comprehensive understanding of how various components and systems evolved. Written in a clear tone with a broad scientific audience in mind, this exciting and thorough treatment is sure to become a classic in the field.
In the world at large and in the Western World in particular, the average age of the population is increasing. This is related to an increase in lifespan resulting from remarkable advances in preventive medicine and the clinical sciences. There has also been a concomitant rise of the modern pharmaceutical and chemical industries which support modern treatment methods and influence the pattern of human disease. The science of nutrition has also made major advances in recent years and is poised for even more encouraging contributions as the tools of molecular biology are applied to mechanisms of nutrient effects at the molecular level. Instruction in nutritional science can no longer be restricted to a description of the chemistry of major dietary constituents, diseases associated with a deficiency, and the amounts of nutrients required to prevent them. Modern nutritionists must now address the pervasive interrelationships of long-term nutritional habits and chronic diseases of the cardiovascular system, of cancer, and of osteoporosis, among others. There is also the role of nutrition as a tool in the treatment of post operative and other patients in the clinical setting. It is at these interfaces that drugs and nutrients interact in significant ways.
The book describes various recent technological interventions in production, handling and processing of important horticultural crops and also discusses the various methods to extend the shelf life as well as development of different value added products including important spices and other uses. Importance of horticulture in Indian context, growth pattern, area and production, and its role in human nutrition are discussed in this book.
A valuable addition to the Wiley Series in Microwave and Optical Engineering Today's modern wireless mobile communications depend on adaptive "smart" antennas to provide maximum range and clarity. With the recent explosive growth of wireless applications, smart antenna technology has achieved widespread commercial and military applications. The only book available on the topic of adaptive antennas using digital technology, this text reflects the latest developments in smart antenna technology and offers timely information on fundamentals, as well as new adaptive techniques developed by the authors. Coupling electromagnetic aspects of antenna design with signal processing techniques designed to promote accurate and efficient information exchange, the text presents various mechanisms for characterizing signal-path loss associated with signal propagation, particularly for mobile wireless communications systems based on such techniques as joint space-frequency adaptive processing. In clear, accessible language, the authors: * explain the difference between adaptive antennas and adaptive signal processing * Illustrate the procedures for adaptive processing using directive elements in a conformal array * clarify multistage analysis procedure which combines electromagnetic analysis with signal processing * present a survey of the various models for characterizing radio wave propagation in urban and rural environments * describe a method wherein it is possible to identify and eliminate multipath without spatial diversity * optimize the location of base stations in a complex environment The text is an excellent resource for researchers and engineers working in electromagnetics and signal processing who deal with performance improvement of adaptive techniques, as well as those who are concerned with the characterization of propagation channels and applications of airborne phased arrays.
This book introduces transdermal drug delivery and the developments that have taken place in various transdermal drug delivery techniques including the system-level design approach of a novel miniaturized medical device to offer precise and painless drug delivery via a skin-based transdermal route. It discusses the microelectromechanical systems (MEMS)-based fabrication technique and the design, fabrication and characterization of different MEMS-based components like microneedles and micropumps. It further includes a MEMS-based component micropump with design, analysis, fabrication and characterization of the transdermal drug delivery device and challenges encountered in the design improvements. Features: Summarizes transdermal drug delivery systems especially with a focus on MEMS and microneedles, including theoretical concepts Emphasizes system integration by describing simulation and design techniques as well as experimental fabrication Discusses system-level integration for miniaturized therapeutic devices Includes working simulation models covering microneedles and micropump analysis Explores future direction in development of pertinent devices The book is aimed at researchers, professionals, and graduate students in biomedical engineering, microelectronics, micro-electro-mechanical-systems, and drug delivery.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.