Supercharge and deploy Amazon Redshift Serverless, train and deploy machine learning models using Amazon Redshift ML, and run inference queries at scale Key Features Leverage supervised learning to build binary classification, multi-class classification, and regression models Learn to use unsupervised learning using the K-means clustering method Master the art of time series forecasting using Redshift ML Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionAmazon Redshift Serverless enables organizations to run petabyte-scale cloud data warehouses quickly and in a cost-effective way, enabling data science professionals to efficiently deploy cloud data warehouses and leverage easy-to-use tools to train models and run predictions. This practical guide will help developers and data professionals working with Amazon Redshift data warehouses to put their SQL knowledge to work for training and deploying machine learning models. The book begins by helping you to explore the inner workings of Redshift Serverless as well as the foundations of data analytics and types of data machine learning. With the help of step-by-step explanations of essential concepts and practical examples, you’ll then learn to build your own classification and regression models. As you advance, you’ll find out how to deploy various types of machine learning projects using familiar SQL code, before delving into Redshift ML. In the concluding chapters, you’ll discover best practices for implementing serverless architecture with Redshift. By the end of this book, you’ll be able to configure and deploy Amazon Redshift Serverless, train and deploy machine learning models using Amazon Redshift ML, and run inference queries at scale.What you will learn Utilize Redshift Serverless for data ingestion, data analysis, and machine learning Create supervised and unsupervised models and learn how to supply your own custom parameters Discover how to use time series forecasting in your data warehouse Create a SageMaker endpoint and use that to build a Redshift ML model for remote inference Find out how to operationalize machine learning in your data warehouse Use model explainability and calculate probabilities with Amazon Redshift ML Who this book is forData scientists and machine learning developers working with Amazon Redshift who want to explore its machine-learning capabilities will find this definitive guide helpful. A basic understanding of machine learning techniques and working knowledge of Amazon Redshift is needed to make the most of this book.
Advances in semi-automated high-throughput image data collection routines, coupled with a decline in storage costs and an increase in high-performance computing solutions have led to an exponential surge in data collected by biomedical scientists and medical practitioners. Interpreting this raw data is a challenging task, and nowhere is this more evident than in the field of opthalmology. The sheer speed at which data on cataracts, diabetic retinopathy, glaucoma and other eye disorders are collected, makes it impossible for the human observer to directly monitor subtle, yet critical details. This book is a novel and well-timed endeavor to present, in an amalgamated format, computational image modeling methods as applied to various extrinsic scientific problems in ophthalmology. It is self-contained and presents a highly comprehensive array of image modeling algorithms and methodologies relevant to ophthalmologic problems. The book is the first of its kind, bringing eye imaging and multi-dimensional hyperspectral imaging and data fusion of the human eye, into focus. The editors are at the top of their fields and bring a strong multidisciplinary synergy to this visionary volume. Their "inverted-pyramid" approach in presenting the content, and focus on core applications, will appeal to students and practitioners in the field.
Supercharge and deploy Amazon Redshift Serverless, train and deploy machine learning models using Amazon Redshift ML, and run inference queries at scale Key Features Leverage supervised learning to build binary classification, multi-class classification, and regression models Learn to use unsupervised learning using the K-means clustering method Master the art of time series forecasting using Redshift ML Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionAmazon Redshift Serverless enables organizations to run petabyte-scale cloud data warehouses quickly and in a cost-effective way, enabling data science professionals to efficiently deploy cloud data warehouses and leverage easy-to-use tools to train models and run predictions. This practical guide will help developers and data professionals working with Amazon Redshift data warehouses to put their SQL knowledge to work for training and deploying machine learning models. The book begins by helping you to explore the inner workings of Redshift Serverless as well as the foundations of data analytics and types of data machine learning. With the help of step-by-step explanations of essential concepts and practical examples, you’ll then learn to build your own classification and regression models. As you advance, you’ll find out how to deploy various types of machine learning projects using familiar SQL code, before delving into Redshift ML. In the concluding chapters, you’ll discover best practices for implementing serverless architecture with Redshift. By the end of this book, you’ll be able to configure and deploy Amazon Redshift Serverless, train and deploy machine learning models using Amazon Redshift ML, and run inference queries at scale.What you will learn Utilize Redshift Serverless for data ingestion, data analysis, and machine learning Create supervised and unsupervised models and learn how to supply your own custom parameters Discover how to use time series forecasting in your data warehouse Create a SageMaker endpoint and use that to build a Redshift ML model for remote inference Find out how to operationalize machine learning in your data warehouse Use model explainability and calculate probabilities with Amazon Redshift ML Who this book is forData scientists and machine learning developers working with Amazon Redshift who want to explore its machine-learning capabilities will find this definitive guide helpful. A basic understanding of machine learning techniques and working knowledge of Amazon Redshift is needed to make the most of this book.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.