Based on empirical investigation and an interdisciplinary approach, this book offers a crucial theoretical work on China’s basic-level judicial system and a masterpiece by Professor Suli Zhu, a prominent jurist on modern China. Its primary goal is to identify issues – ones that can only be effectively sensed and raised by China’s jurists because of their unique circumstances and cultural background – that are of practical significance in China’s basic-level judicial system, and of theoretical significance to juristic systems in general. Divided into four parts, the book begins with a discussion of the systematic and theoretical problems in China’s basic-level judicial system at the macro-, meso- and micro- scale. In the second part, it examines the technology and knowledge to be found in the basic-level judicial system, so as to make the traditionally “invisible” technology and knowledge of trial judges available for general theoretical analyses. The third part focuses on the judge and other legal personnel in the judicial system, while the last part discusses the value of legal sociology surveys as powerful resources. This book not only presents essential features of China’s judicial system by precisely describing key issues in its basic-level judicial system, but also offers well-founded content that accentuates the significance of social management innovation.
Electronic Enclosures, Housings and Packages considers the problem of heat management for electronics from an encasement perspective. It addresses enclosures and their applications for industrial electronics, as well as LED lighting solutions for stationary and mobile markets. The book introduces fundamental concepts and defines dimensions of success in electrical enclosures. Other chapters discuss environmental considerations, shielding, standardization, materials selection, thermal management, product design principles, manufacturing techniques and sustainability. Final chapters focus on business fundamentals by outlining successful technical propositions and potential future directions.
This book presents the fundamental scientific principles of long afterglow phosphorescent materials and a comprehensive review of both commercialized afterglow materials and the latest advances in the development of novel long afterglow materials. It is designed to supply much needed information about inorganic and organic afterglow materials, including detailed treatment of structure, classification, preparation techniques, characterization, surface modification chemistry, and optical measurements. Special attention is given to technological applications such as photovoltaics, photocatalytic reactions, and lighting and molecular sensing. Although traditional long afterglow phosphors have been widely investigated and used in industry, and significant efforts have recently been made toward the use of these materials for bioimaging, there is to date no scientific monograph dedicated to afterglow materials. This book not only provides a beginners’ guide to the fundamentals of afterglow luminescence and materials, but also gives skilled researchers essential updates on emerging trends and efforts. The work provides a special focus on organic afterglow materials, which offer several advantages such as light-weight, flexible, and wide varieties; mild preparation conditions; and good processability. This book is aimed at postgraduate students, researchers, and technologists who are engaged in the synthesis, development, and commercialization of afterglow materials. It represents essential reading on interdisciplinary frontiers in the materials science, chemistry, photophysics, and biological aspects of afterglow materials.
This book focuses on the design of efficient & dynamic methods to allocate divisible resources under various auction mechanisms, discussing their applications in power & microgrid systems and the V2G & EV charging coordination problems in smart grids. It describes the design of dynamic methods for single-sided and double-sided auction games and presents a number of simulation cases verifying the performances of the proposed algorithms in terms of efficiency, convergence and computational complexity. Further, it explores the performances of certain auction mechanisms in a hierarchical structure and with large-scale agents, as well as the auction mechanisms for the efficient allocation of multi-type resources. Lastly, it generalizes the main and demonstrates their application in smart grids. This book is a valuable resource for researchers, engineers, and graduate students in the fields of optimization, game theory, auction mechanisms and smart grids interested in designing dynamic auction mechanisms to implement optimal allocation of divisible resources, especially electricity and other types of energy in smart grids.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.