The National Aeronautics and Space Administration (NASA) maintains an active interest in the environmental conditions associated with living and working in spacecraft and identifying hazards that might adversely affect the health and well-being of crew members. Despite major engineering advances in controlling the spacecraft environment, some water and air contamination appears to be inevitable. Several hundred chemical species are likely to be found in the closed environment of the spacecraft, and as the frequency, complexity, and duration of human space flight increase, identifying and understanding significant health hazards will become more complicated and more critical for the success of the missions. NASA asked the National Research Council (NRC) Committee on Toxicology to develop guidelines, similar to those developed by the NRC in 1992 for airborne substances, for examining the likelihood of adverse effects from water contaminants on the health and performance of spacecraft crews. In this report, the Subcommittee on Spacecraft Water Exposure Guidelines (SWEGs) examines what is known about water contaminants in spacecraft, the adequacy of current risk assessment methods, and the toxicologic issues of greatest concern.
The Bhopal Disaster of 1984 resulted in the death of around 2,000 residents living near chemical plants and irreversible injuries to more than 20,000 other residents. These numbers can be attributed to the community's lack of awareness concerning the chemicals' existence, dangers and effects, and/or how to react in case of emergency. The disaster emphasized the need for governments to identify hazardous substances and to aid local communities in developing plans for emergency exposures. As a result, the United States government issued the Superfund Amendments and Reauthorization Act (SARA) of 1986; requiring the identification of extremely hazardous substances (EHSs) by the Environmental Protection Agency (EPA). EPA was also tasked with assisting Local Emergency Planning Committees (LEPCs) in conducting health-hazard assessments to develop emergency-response plans for sites where EHSs are produced, stored, transported, or used. The EPA identified nearly 400 EHSs in terms of their immediate danger to life and health (IDLH) as their first step in assisting these LEPCs. In 1991 the EPA went on to request that the National Research Council (NRC) Committee on Toxicology (COT) develop criteria and methods for developing emergency exposure levels for EHSs for the general population. The COT, who had published many reports on emergency exposure guidance levels at the time, designated the task to a subcommittee. The subcommittee focused on Guidelines for Developing Community Emergency Exposure Levels for Hazardous Substances. Four years later the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances (NAC) was created with a focus on identifying, reviewing, and interpreting relevant toxicologic and other scientific data and developing acute exposure guideline levels (AEGLs) for high-priority, acutely toxic chemicals. In Acute Exposure Guideline Levels for Selected Airborne Chemicals:Volume 4, the NAC outlines acute exposure guideline levels for chlorine, hydrogen chloride, toluene 2,4, hydrogen fluoride, 2,6-diisocyanate, and uranium hexafluoride.
U.S. Navy personnel who work on submarines are in an enclosed and isolated environment for days or weeks at a time when at sea. Unlike a typical work environment, they are potentially exposed to air contaminants 24 hours a day. To protect workers from potential adverse health effects due to those conditions, the U.S. Navy has established exposure guidance levels for a number of contaminants. The Navy asked a subcommittee of the National Research Council (NRC) to review, and develop when necessary, exposure guidance levels for 10 contaminants. Overall, the subcommittee found the values proposed by the Navy to be suitable for protecting human health. For a few chemicals, the committee proposed levels that were lower than those proposed by the Navy. In conducting its evaluation, the subcommittee found that there is little exposure data available on the submarine environment and echoed a previous recommendation from an earlier NRC report to conduct monitoring that would provide a complete analysis of submarine air and data on exposure of personnel to contaminants.
The National Aeronautics and Space Administration (NASA) has developed spacecraft maximum allowable concentrations (SMACs) for contaminants that might be found in the atmosphere within spacecraft during space missions to ensure the health and well-being of astronauts traveling and working in this unique environment. In volume 1 of this series, NASA developed SMACs for 11 compounds: acetaldehyde, ammonia, carbon monoxide, formaldehyde, Freon 113, hydrogen, methane, methanol, octamethyltrisiloxane, trimethylsilanol, and vinyl chloride. Volume 2 includes SMACs for 12 more airborne contaminants: acrolein, benzene, carbon dioxide, 2-ethoxyethanol, hydrazine, indole, mercury, methylene chloride, methyl ethyl ketone, nitromethane, 2-propoanol, and toluene. In developing SMACs from the toxicological literature, NASA followed the Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants published in 1992 by the National Research Council.
The National Aeronautics and Space Administration (NASA) has developed spacecraft maximum allowable concentrations (SMACs) for contaminants that might be found in the atmosphere within spacecraft during space missions to ensure the health and well-being of astronauts traveling and working in this unique environment. In volume 1 of this series, NASA developed SMACs for 11 compounds: acetaldehyde, ammonia, carbon monoxide, formaldehyde, Freon 113, hydrogen, methane, methanol, octamethyltrisiloxane, trimethylsilanol, and vinyl chloride. Volume 2 includes SMACs for 12 more airborne contaminants: acrolein, benzene, carbon dioxide, 2-ethoxyethanol, hydrazine, indole, mercury, methylene chloride, methyl ethyl ketone, nitromethane, 2-propoanol, and toluene. In developing SMACs from the toxicological literature, NASA followed the Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants published in 1992 by the National Research Council.
Standing Operating Procedures for Developing Acute Exposure Guideline Levels for Hazardous Chemicals contains a detailed and comprehensive methodology for developing acute exposure guideline levels (AEGLs) for toxic substances from inhalation exposures. The book provides guidance on what documents and databases to use, toxicity endpoints that need to be evaluated, dosimetry corrections from animal to human exposures, selection of appropriate uncertainty factors to address the variability between animals and humans and within the human population, selection of modifying factors to address data deficiencies, time scaling, and quantitative cancer risk assessment. It also contains an example of a summary of a technical support document and an example of AEGL derivation. This book will be useful to persons in the derivation of levels from other exposure routesâ€"both oral and dermalâ€"as well as risk assessors in the government, academe, and private industry.
The National Aeronautics and Space Administration (NASA) has measured numerous airborne contaminants in spacecraft during space missions because of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. This volume reviews the spacecraft maximum allowable concentrations (SMACs) for various contaminants to determine whether NASA's recommended exposure limits are consistent with recommendations in the National Research Council's 1992 volume Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants.
To guide mission planning, military decision makers need information on the health risks of potential exposures to individual soldiers and their potential impact on mission operations. To help with the assessment of chemical hazards, the U.S. Army Center for Health Promotion and Preventive Medicine developed three technical guides for characterizing chemicals in terms of their risks to the mission and to the health of the force. The report reviews these guides for their scientific validity and conformance with current risk-assessment practices. The report finds that the military exposure guidelines are appropriate (with some modification) for providing force health protection, but that for assessing mission risk, a new set of exposure guidelines is needed that predict concentrations at which health effects would degrade the performance of enough soldiers to hinder mission accomplishment.
To protect space crews from contaminants in potable and hygiene water, NASA requested that the National Research Council (NRC) provide guidance on how to develop water exposure guidelines and subsequently review NASA's development of exposure guidelines for specific chemicals.
The U.S. military is considering using a compound called iodotrifluoromethane (CF3I) for fire suppression to replace previously-used compounds (halons) that are being phased out because they deplete the ozone layer. This report reviews available toxicological data on CF3I and evaluates the scientific basis of the U.S. Army's proposed exposure limit of 2,000 parts per million (ppm). The report recommends that CF3I be used for fire suppression in normally unoccupied spaces because of its potential to cause cardiac sensitization in test animals. The report also recommends that further genotoxicity testing be conducted (testing for changes in genetic material), and that CF3I be assessed for its potential to cause cancer. Should the Army decide to use CF3I, information should be collected and evaluated on how much of the chemical or any of its degradation products might be released and how often.
The National Aeronautics and Space Administration (NASA) maintains an active interest in the environmental conditions associated with living and working in spacecraft and identifying hazards that might adversely affect the health and well-being of crew members. Despite major engineering advances in controlling the spacecraft environment, some water and air contamination appears to be inevitable. Several hundred chemical species are likely to be found in the closed environment of the spacecraft, and as the frequency, complexity, and duration of human space flight increase, identifying and understanding significant health hazards will become more complicated and more critical for the success of the missions. NASA asked the National Research Council (NRC) Committee on Toxicology to develop guidelines, similar to those developed by the NRC in 1992 for airborne substances, for examining the likelihood of adverse effects from water contaminants on the health and performance of spacecraft crews. In this report, the Subcommittee on Spacecraft Water Exposure Guidelines (SWEGs) examines what is known about water contaminants in spacecraft, the adequacy of current risk assessment methods, and the toxicologic issues of greatest concern.
The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to crew members that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to this request, the NRC first developed criteria and methods for preparing SMACs for spacecraft contaminants, published in its 1992 report Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants. Since then, the NRC's Subcommittee on Spacecraft Maximum Allowable Concentrations has been reviewing NASA's documentation of chemical-specific SMACs. This report is the fourth volume in the series Spacecraft Maximum Allowable Concentrations for Space Station Contaminants. The first volume was published in 1994 and the second and third in 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4 has been reviewed in draft form by individuals chosen for their technical expertise and diverse perspectives in accordance with procedures approved by the NRC's Report Review Committee for reviewing NRC and Institute of Medicine reports. The purpose of that Independent review was to provide candid and critical comments to assist the NRC in making the published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process.
To protect space crews from contaminants in potable and hygiene water, NASA requested that the National Research Council (NRC) provide guidance on how to develop water exposure guidelines and subsequently review NASA's development of exposure guidelines for specific chemicals.
The National Aeronautics and Space Administration (NASA) has measured numerous airborne contaminants in spacecraft during space missions because of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. This volume reviews the spacecraft maximum allowable concentrations (SMACs) for various contaminants to determine whether NASA's recommended exposure limits are consistent with recommendations in the National Research Council's 1992 volume Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants.
The National Aeronautics and Space Administration (NASA) has developed spacecraft maximum allowable concentrations (SMACs) for contaminants that might be found in the atmosphere within spacecraft during space missions to ensure the health and well-being of astronauts traveling and working in this unique environment. In volume 1 of this series, NASA developed SMACs for 11 compounds: acetaldehyde, ammonia, carbon monoxide, formaldehyde, Freon 113, hydrogen, methane, methanol, octamethyltrisiloxane, trimethylsilanol, and vinyl chloride. Volume 2 includes SMACs for 12 more airborne contaminants: acrolein, benzene, carbon dioxide, 2-ethoxyethanol, hydrazine, indole, mercury, methylene chloride, methyl ethyl ketone, nitromethane, 2-propoanol, and toluene. In developing SMACs from the toxicological literature, NASA followed the Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants published in 1992 by the National Research Council.
The National Aeronautics and Space Administration (NASA) has developed spacecraft maximum allowable concentrations (SMACs) for contaminants that might be found in the atmosphere within spacecraft during space missions to ensure the health and well-being of astronauts traveling and working in this unique environment. In volume 1 of this series, NASA developed SMACs for 11 compounds: acetaldehyde, ammonia, carbon monoxide, formaldehyde, Freon 113, hydrogen, methane, methanol, octamethyltrisiloxane, trimethylsilanol, and vinyl chloride. Volume 2 includes SMACs for 12 more airborne contaminants: acrolein, benzene, carbon dioxide, 2-ethoxyethanol, hydrazine, indole, mercury, methylene chloride, methyl ethyl ketone, nitromethane, 2-propoanol, and toluene. In developing SMACs from the toxicological literature, NASA followed the Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants published in 1992 by the National Research Council.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.