This expanded edition of the original bestseller, How to Teach Mathematics, offers hands-on guidance for teaching mathematics in the modern classroom setting. Twelve appendices have been added that are written by experts who have a wide range of opinions and viewpoints on the major teaching issues. Eschewing generalities, the award-winning author and teacher, Steven Krantz, addresses issues such as preparation, presentation, discipline, and grading. He also emphasizes specifics--from how to deal with students who beg for extra points on an exam to mastering blackboard technique to how to use applications effectively. No other contemporary book addresses the principles of good teaching in such a comprehensive and cogent manner. The broad appeal of this text makes it accessible to areas other than mathematics. The principles presented can apply to a variety of disciplines--from music to English to business. Lively and humorous, yet serious and sensible, this volume offers readers incisive information and practical applications.
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
This book contains contributions by an impressive list of leading mathematicians. The articles include high-level survey and research papers exploring contemporary issues in geometric analysis, differential geometry, and several complex variables. Many of the articles will provide graduate students with a good entry point into important areas of modern research. The material is intended for researchers and graduate students interested in several complex variables and complex geometry.
Calculus is one of the milestones of human thought, and has become essential to a broader cross-section of the population in recent years. This two-volume work focuses on today's best practices in calculus teaching, and is written in a clear, crisp style.
This is the second edition of a book originally published in 1997. Today the internet virtually consumes all of our lives (especially the lives of writers). As both readers and writers, we are all aware of blogs, chat rooms, and preprint servers. There are now electronic-only journals and print-on-demand books, Open Access journals and joint research projects such as MathOverflow—not to mention a host of other new realities. It truly is a brave new world, one that can be overwhelming and confusing. The truly new feature of this second edition is an extensive discussion of technological developments. Similar to the first edition, Krantz's frank and straightforward approach makes this book particularly suitable as a textbook for an undergraduate course.
This third edition is a lively and provocative tract on how to teach mathematics in today's new world of online learning tools and innovative teaching devices. The author guides the reader through the joys and pitfalls of interacting with modern undergraduates--telling you very explicitly what to do and what not to do. This third edition has been streamlined from the second edition, but still includes the nuts and bolts of good teaching, discussing material related to new developments in teaching methodology and technique, as well as adding an entire new chapter on online teaching methods.
Mathematicians are expected to publish their work: in journals, conference proceedings, and books. It is vital to advancing their careers. Later, some are asked to become editors. However, most mathematicians are trained to do mathematics, not to publish it. But here, finally, for graduate students and researchers interested in publishing their work, Steven G. Krantz, the respected author of several "how-to" guides in mathematics, shares his experience as an author, editor, editorial board member, and independent publisher. This new volume is an informative, comprehensive guidebook to publishing mathematics. Krantz describes both the general setting of mathematical publishing and the specifics about all the various publishing situations mathematicians may encounter. As with his other books, Krantz's style is engaging and frank. He gives advice on how to get your book published, how to get organized as an editor, what to do when things go wrong, and much more. He describes the people, the language (including a glossary), and the process of publishing both books and journals. Steven G. Krantz is an accomplished mathematician and an award-winning author. He has published more than 130 research articles and 45 books. He has worked as an editor of several book series, research journals, and for the Notices of the AMS. He is also the founder of the Journal of Geometric Analysis. Other titles available from the AMS by Steven G. Krantz are How to Teach Mathematics, A Primer of Mathematical Writing, A Mathematician's Survival Guide, and Techniques of Problem Solving.
This volume comprises the proceedings of a conference on the geometric analysis of several complex variables held at POSTECH in June 1997. The conference was attended by scienctists and students from around the globe. Each of the five plenary speakers at the conference gave a short course on a topic of current interest in the field. The lecture write-ups contain cogent and accessible information intended for a broad audience. The volume also includes a tutorial in several complex variables given by Kim and Krantz at the conference. This tutorial is geared toward helping the novice to understand the rest of the material in the book. The bibliographies of the papers give students and young mathematicians a valuable resource for future learning on the topic. This book provides a substantial overview on areas of current activity. Required background for understanding the text is a solid undergraduate education in mathematics and familiarity with first year graduate studies in real and complex analysis. Some exposure to geometry would be helpful. The book is also suitable for use as a supplemental course text.
Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.
Here's the perfect self-teaching guide to help anyone master differential equations--a common stumbling block for students looking to progress to advanced topics in both science and math. Covers First Order Equations, Second Order Equations and Higher, Properties, Solutions, Series Solutions, Fourier Series and Orthogonal Systems, Partial Differential Equations and Boundary Value Problems, Numerical Techniques, and more.
This is the second edition of a book originally published in 1997. Today the internet virtually consumes all of our lives (especially the lives of writers). As both readers and writers, we are all aware of blogs, chat rooms, and preprint servers. There are now electronic-only journals and print-on-demand books, Open Access journals and joint research projects such as MathOverflow—not to mention a host of other new realities. It truly is a brave new world, one that can be overwhelming and confusing. The truly new feature of this second edition is an extensive discussion of technological developments. Similar to the first edition, Krantz's frank and straightforward approach makes this book particularly suitable as a textbook for an undergraduate course.
Differential equations is one of the oldest subjects in modern mathematics. It was not long after Newton and Leibniz invented the calculus that Bernoulli and Euler and others began to consider the heat equation and the wave equation of mathematical physics. Newton himself solved differential equations both in the study of planetary motion and also in his consideration of optics. Today differential equations is the centerpiece of much of engineering, of physics, of significant parts of the life sciences, and in many areas of mathematical modeling. This text describes classical ideas and provides an entree to the newer ones. The author pays careful attention to advanced topics like the Laplace transform, Sturm–Liouville theory, and boundary value problems (on the traditional side) but also pays due homage to nonlinear theory, to modeling, and to computing (on the modern side). This book began as a modernization of George Simmons’ classic, Differential Equations with Applications and Historical Notes. Prof. Simmons invited the author to update his book. Now in the third edition, this text has become the author’s own and a unique blend of the traditional and the modern. The text describes classical ideas and provides an entree to newer ones. Modeling brings the subject to life and makes the ideas real. Differential equations can model real life questions, and computer calculations and graphics can then provide real life answers. The symbiosis of the synthetic and the calculational provides a rich experience for students, and prepares them for more concrete, applied work in future courses. Additional Features Anatomy of an Application sections. Historical notes continue to be a unique feature of this text. Math Nuggets are brief perspectives on mathematical lives or other features of the discipline that will enhance the reading experience. Problems for Review and Discovery give students some open-ended material for exploration and further learning. They are an important means of extending the reach of the text, and for anticipating future work. This new edition is re-organized to make it more useful and more accessible. The most frequently taught topics are now up front. And the major applications are isolated in their own chapters. This makes this edition the most useable and flexible of any previous editions.
MARKETING: THE CORE, 2/e by Kerin, Berkowitz, Hartley, and Rudelius continues the tradition of cutting-edge content and student-friendliness set by Marketing 8/e, but in a shorter, more accessible package. The Core distills Marketing’s 22 chapters down to 18, leaving instructors just the content they need to cover the essentials of marketing in a single semester. Instructors using The Core also benefit from a full-sized supplements package that surpasses anything offered by the competition, while students will appreciate the easy-to-read paperback format that’s equally kind to both the eyes and the pocketbook. The Core is more than just a "baby Kerin"; it combines great writing, currency, and supplements into the ideal package for budget-conscious students and time-conscious professors.
This up-to-date faculty directory lists the contact information of all the faculty members, placement administrators, and student organizations of almost 500 worldwide universities and technical institutes offering chemical engineering curricula. This offers a comprehensive reference tool that is unique and valuable, in that there is no such directory available on chemical engineering. The indices make it easy to find the current affiliation of any chemical, biological and environmental engineering faculty by listing in alphabetical order.
When you are a young mathematician, graduate school marks the first step toward a career in mathematics. During this period, you will make important decisions which will affect the rest of your career. This book is a detailed guide to help you navigate graduate school and the years that follow. -- Publisher description.
This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.
Articles in this book are based on talks given at the conference commemorating the 150th anniversary of the Washington University in St. Louis. The articles cover a wide range of important topics in mathematics, and are written by former and present faculty or graduates of the Washington University Department of Mathematics. The volume is prefaced by a brief history of the Washington University Department of Mathematics, a roster of those who received the PhD degree from the department, and a list of the Washington University Department of Mathematics faculty.
Differential Equations: Theory, Technique, and Practice with Boundary Value Problems presents classical ideas and cutting-edge techniques for a contemporary, undergraduate-level, one- or two-semester course on ordinary differential equations. Authored by a widely respected researcher and teacher, the text covers standard topics such as partial diff
Basic logic -- Methods of proof -- Set theory -- Relations and functions -- Axioms of set theory, paradoxes, and rigor -- Number systems -- More on the real number system -- A glimpse of topology -- Elementary number theory -- Zero-knowledge proofs and cryptography -- Examples of axiomatic theories
This book contains contributions by an impressive list of leading mathematicians. The articles include high-level survey and research papers exploring contemporary issues in geometric analysis, differential geometry, and several complex variables. Many of the articles will provide graduate students with a good entry point into important areas of modern research. The material is intended for researchers and graduate students interested in several complex variables and complex geometry.
The idea of complex numbers dates back at least 300 years—to Gauss and Euler, among others. Today complex analysis is a central part of modern analytical thinking. It is used in engineering, physics, mathematics, astrophysics, and many other fields. It provides powerful tools for doing mathematical analysis, and often yields pleasing and unanticipated answers. This book makes the subject of complex analysis accessible to a broad audience. The complex numbers are a somewhat mysterious number system that seems to come out of the blue. It is important for students to see that this is really a very concrete set of objects that has very concrete and meaningful applications. Features: This new edition is a substantial rewrite, focusing on the accessibility, applied, and visual aspect of complex analysis This book has an exceptionally large number of examples and a large number of figures. The topic is presented as a natural outgrowth of the calculus. It is not a new language, or a new way of thinking. Incisive applications appear throughout the book. Partial differential equations are used as a unifying theme.
The implicit function theorem is part of the bedrock of mathematical analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for Ck functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth function, and (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash–Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present uncorrected reprint of this classic monograph. Originally published in 2002, The Implicit Function Theorem is an accessible and thorough treatment of implicit and inverse function theorems and their applications. It will be of interest to mathematicians, graduate/advanced undergraduate students, and to those who apply mathematics. The book unifies disparate ideas that have played an important role in modern mathematics. It serves to document and place in context a substantial body of mathematical ideas.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.