Electric dipole moments (EDMs) have interested physicists since 1950, when it was first suggested that there was no experimental evidence that nuclear forces are symmetric under parity (P) transformation. This question was regarded as speculative because the existence of an EDM, in addition to P violation, requires a violation of time-reversal (T) symmetry. In 1964 it was discovered that the invariance under CP transformation, which combines charge conjugation (C) with parity, is violated in K-meson decays. This provided a new incentive for EDM searches. Since the combined operations of CPT are expected to leave a system invariant, breakdown of CP invariance should be accompanied by a violation of time-reversal symmetry. Thus there is a reason to expect that EDMs should exist at some level. The original neutron EDM experiments were later supplemented with checks of T invariance in atoms and molecules. These investigations are pursued now by many groups. Over the years, the upper limit on the neutron EDM has been improved by seven orders of magnitude, and the upper limit on the electron EDM obtained in atomic experiments is even more strict.
Following the path by which humanity learned quantum mechanics can lead to an improved teaching and understanding of the fundamental theory and the origins of its perceived limitations. The purpose of this textbook is to retrace the development of quantum mechanics by investigating primary sources (including original published papers and letters) with attention to their timing and influence. Placing the development of quantum mechanics in its historical context, from the nascent philosophical notions of matter, atoms, and void in Ancient Greece, to their scientific realization in the 19th and 20th centuries, the book culminates with an examination of the current state of the field and an introduction to quantum information and computing.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.