The mammalian central nervous system is a remarkable structure which has attracted many new investigators, as evidenced by the dramatic increase in scientific publications dealing with neurobiology. Every day basic scientists conduct new and exciting experiments, resulting in remarkable discoveries des tined to help mankind. Unfortunately many of these new findings are slow to be accepted by the clinical world. This is especially true in the area of brain trauma, where the present prognosis is usually very poor. We have known for quite some time that the mammalian central nervous system is capable of compensating for severe damage in many different ways, and under some circumstances behav ioral compensation can be observed. However, much is still to be learned about the various factors and events that lead to functional recovery and those condi tions that do not. It is this challenge that originally excited a number of the contributors to this volume to explore the subject of recovery from brain damage. One factor in particular that is known to change the prognosis of recovery is the age of the organism at the time of the damage. This book is an attempt to explore this important variable. Most of the literature concerning aging deals with widespread degenerative changes and paints a grim picture for the aging central nervous system in terms of recovery of function following trauma.
Fundamental Statistical Principles for Neurobiologists introduces readers to basic experimental design and statistical thinking in a comprehensive, relevant manner. This book is an introductory statistics book that covers fundamental principles written by a neuroscientist who understands the plight of the neuroscience graduate student and the senior investigator. It summarizes the fundamental concepts associated with statistical analysis that are useful for the neuroscientist, and provides understanding of a particular test in language that is more understandable to this specific audience, with the overall purpose of explaining which statistical technique should be used in which situation. Different types of data are discussed such as how to formulate a research hypothesis, the primary types of statistical errors and statistical power, followed by how to actually graph data and what kinds of mistakes to avoid. Chapters discuss variance, standard deviation, standard error, mean, confidence intervals, correlation, regression, parametric vs. nonparametric statistical tests, ANOVA, and post hoc analyses. Finally, there is a discussion on how to deal with data points that appear to be "outliers" and what to do when there is missing data, an issue that has not sufficiently been covered in literature. - An introductory guide to statistics aimed specifically at the neuroscience audience - Contains numerous examples with actual data that is used in the analysis - Gives the investigators a starting pointing for evaluating data in easy-to-understand language - Explains in detail many different statistical tests commonly used by neuroscientists
Fundamental Statistical Principles for Neurobiologists introduces readers to basic experimental design and statistical thinking in a comprehensive, relevant manner. This book is an introductory statistics book that covers fundamental principles written by a neuroscientist who understands the plight of the neuroscience graduate student and the senior investigator. It summarizes the fundamental concepts associated with statistical analysis that are useful for the neuroscientist, and provides understanding of a particular test in language that is more understandable to this specific audience, with the overall purpose of explaining which statistical technique should be used in which situation. Different types of data are discussed such as how to formulate a research hypothesis, the primary types of statistical errors and statistical power, followed by how to actually graph data and what kinds of mistakes to avoid. Chapters discuss variance, standard deviation, standard error, mean, confidence intervals, correlation, regression, parametric vs. nonparametric statistical tests, ANOVA, and post hoc analyses. Finally, there is a discussion on how to deal with data points that appear to be "outliers" and what to do when there is missing data, an issue that has not sufficiently been covered in literature. - An introductory guide to statistics aimed specifically at the neuroscience audience - Contains numerous examples with actual data that is used in the analysis - Gives the investigators a starting pointing for evaluating data in easy-to-understand language - Explains in detail many different statistical tests commonly used by neuroscientists
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.