By the dawn of the new millennium, robotics has undergone a major tra- formation in scope and dimensions. This expansion has been brought about bythematurityofthe?eldandtheadvancesinitsrelatedtechnologies.From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities,providingsupportinservices,entertainment,education,heal- care, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse researchareas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their signi?cance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.
This monograph deals with energy based control of interactive robotic interfaces. The port-Hamiltonian framework is exploited both for modeling and controlling interactive robotic interfaces. The book provides an energy oriented analysis and control synthesis of interactive robotic interfaces, from a single robot to multi-robot systems for interacting with real and virtual, possibly unstructured, environments.
This monograph deals with energy based control of interactive robotic interfaces. The port-Hamiltonian framework is exploited both for modeling and controlling interactive robotic interfaces. The book provides an energy oriented analysis and control synthesis of interactive robotic interfaces, from a single robot to multi-robot systems for interacting with real and virtual, possibly unstructured, environments.
By the dawn of the new millennium, robotics has undergone a major tra- formation in scope and dimensions. This expansion has been brought about bythematurityofthe?eldandtheadvancesinitsrelatedtechnologies.From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities,providingsupportinservices,entertainment,education,heal- care, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse researchareas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their signi?cance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.
Presents a holistic, energy-based view of robotic systems. It examines the relevance of such energy considerations to robotics; starting from the fundamental aspects and proceeding to look at their practical application to robotic systems. Using Port-Hamiltonian Systems as a basis, it provides examples of energy measurement, passivity and safety.
Robots, and more generally mechanical systems, are types of a physical system. This is why it is important to study and control these systems using information about their particular structure that describes their particular nature. In discussing physical systems, concepts like energy, interconnection and interaction, become of substantial importance. Furthermore, during the modeling and control tasks, the results we obtain should be independent from artificial co-ordinates that people use to analyse the results of their work. This has lead to the concept of co-ordinate free description and tensors that have been used a lot in the theory of relativity. Throughout this book emphasis is placed on the intrinsic description of the results reported. The book describes the modeling and control of robotic systems subject to interaction. It covers everything from basic concepts of differential geometry to real robotics. Physics and the geometric interconnection of arts play a major role throughout the work.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.