This textbook on Feynman integrals starts from the basics, requiring only knowledge of special relativity and undergraduate mathematics. Feynman integrals are indispensable for precision calculations in quantum field theory. At the same time, they are also fascinating from a mathematical point of view. Topics from quantum field theory and advanced mathematics are introduced as needed. The book covers modern developments in the field of Feynman integrals. Topics included are: representations of Feynman integrals, integration-by-parts, differential equations, intersection theory, multiple polylogarithms, Gelfand-Kapranov-Zelevinsky systems, coactions and symbols, cluster algebras, elliptic Feynman integrals, and motives associated with Feynman integrals. This volume is aimed at a) students at the master's level in physics or mathematics, b) physicists who want to learn how to calculate Feynman integrals (for whom state-of-the-art techniques and computations are provided), and c) mathematicians who are interested in the mathematical aspects underlying Feynman integrals. It is, indeed, the interwoven nature of their physical and mathematical aspects that make Feynman integrals so enthralling.
This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
Identity and subjectivity in musical performances Who is the “I” that performs? The arts of the twentieth and twenty-first centuries have pushed us relentlessly to reconsider our notions of the self, expression, and communication: to ask ourselves, again and again, who we think we are and how we can speak meaningfully to one another. Although in other performing arts studies, especially of theatre, the performance of selfhood and identity continues to be a matter of lively debate in both practice and theory, the question of how a sense of self is manifested through musical performance has been neglected. The authors of Voices, Bodies, Practices are all musician-researchers: the book employs artistic research to explore how embodied performing “voices” can emerge from the interactions of individual performers and composers, musical materials, instruments, mediating technologies, and performance contexts.
This self-contained monograph presents a new stochastic approach to global optimization problems arising in a variety of disciplines including mathematics, operations research, engineering, and economics. The volume deals with constrained and unconstrained problems and puts a special emphasis on large scale problems. It also introduces a new unified concept for unconstrained, constrained, vector, and stochastic global optimization problems. All methods presented are illustrated by various examples. Practical numerical algorithms are given and analyzed in detail. The topics presented include the randomized curve of steepest descent, the randomized curve of dominated points, the semi-implicit Euler method, the penalty approach, and active set strategies. The optimal decoding of block codes in digital communications is worked out as a case study and shows the potential and high practical relevance of this new approach. Global Optimization: A Stochastic Approach is an elegant account of a refined theory, suitable for researchers and graduate students interested in global optimization and its applications.
Unsere Gegenwart scheint mehr und mehr Umbrüchen zu unterliegen. Eine Innovation folgt der nächsten, Traditionen gelten schnell als überholt, moderne Trends werden altmodisch. Dieser permanente Wandel verläuft in unserer Wahrnehmung immer rasanter. Auch bei einem Blick in die Vergangenheit scheinen Umbrüche, neue Ideen und Erfindungen zu überwiegen und in ständigen Wertverschiebungen zu resultieren. Aber was ist mit den beständigen Dingen? Nicht nur Veränderungen schaffen Werte, sondern auch Beständigkeit. Dabei stellt sich nicht nur die Frage, welche Werte durch Kontinuität entstehen, sondern auch welche Werte sie bedingen. Traditionen sind identitätsstiftend. Sie gehören zum kulturellen Gedächtnis, bilden oftmals eine Basis für Innovationen und haben dadurch eine eigene Bedeutung im Hinblick auf Veränderungen. Kontinuitäten zu erkennen, ist in einer Welt im stetigen Wandel ein schwieriges Unterfangen und auch im Rückblick nicht unproblematisch, vor allem wenn die Akteure selbst nicht mehr zu sprechen sind. Aber ein Blick auf die materielle Kultur erlaubt Aufschlüsse über Beständigkeit. Von Menschen gefertigte Objekte sind Traditionsträger, sie beherbergen die Ideen und Wertvorstellungen ihrer Gestalter und bleiben über Zeit und Raum hinweg erhalten. The Limits of Change umfasst Beiträge aus Archäologie, Philosophie und Ethnologie, die sich auf unterschiedliche Weise mit der Thematik der Kontinuität auseinandersetzen und den Sachverhalt kritisch beleuchten. So wird zum einen der Blick in die Vergangenheit gerichtet und auf Basis archäologischer Überlieferungen das Thema untersucht. Zum anderen liefert die Diskussion zeitgenössischer und globaler Sachverhalte wichtige Hinweise im Hinblick auf Kontinuität und Tradition.
This textbook on Feynman integrals starts from the basics, requiring only knowledge of special relativity and undergraduate mathematics. Feynman integrals are indispensable for precision calculations in quantum field theory. At the same time, they are also fascinating from a mathematical point of view. Topics from quantum field theory and advanced mathematics are introduced as needed. The book covers modern developments in the field of Feynman integrals. Topics included are: representations of Feynman integrals, integration-by-parts, differential equations, intersection theory, multiple polylogarithms, Gelfand-Kapranov-Zelevinsky systems, coactions and symbols, cluster algebras, elliptic Feynman integrals, and motives associated with Feynman integrals. This volume is aimed at a) students at the master's level in physics or mathematics, b) physicists who want to learn how to calculate Feynman integrals (for whom state-of-the-art techniques and computations are provided), and c) mathematicians who are interested in the mathematical aspects underlying Feynman integrals. It is, indeed, the interwoven nature of their physical and mathematical aspects that make Feynman integrals so enthralling.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.