Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.
This book introduces English-speaking people the basic group method of data handling algorithm. It could be used as a reference source for researchers or as a textbook for specialized courses and seminars in modeling, applied mathematics, and applied statistics.
Compiled by a prominent educator and author, this volume presents an intriguing mix of mathematical paradoxes — phenomena with surprising outcomes that can be resolved mathematically. Students and puzzle enthusiasts will get plenty of enjoyment mixed with a bit of painless mathematical instruction from 30 conundrums, including The Birthday Paradox, Aristotle's Magic Wheel, and A Greek Tragedy.
Practical text shows how to formulate and solve partial differential equations. Coverage includes diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Solution guide available upon request. 1982 edition.
This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.
Originally published by John Wiley and Sons in 1983, Partial Differential Equations for Scientists and Engineers was reprinted by Dover in 1993. Written for advanced undergraduates in mathematics, the widely used and extremely successful text covers diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Dover's 1993 edition, which contains answers to selected problems, is now supplemented by this complete solutions manual.
Antisense Research and Applications is a comprehensive review of oligonucleotide research covering molecular biological advances in this field, the current status of antisense drug research, and strategies for future research and therapeutic applications. In bringing together the latest research from an array of authoritative scientists, Antisense Research and Applications provides an integrated conceptual basis for considering oligonucleotide therapeutics. Topics covered in the 32 chapters of this book include nucleic acid structure and function, antisense RNA, medicinal chemistry of oligonucleotides, analogs, pharmacokinetics and toxicology, and activities of current antisense drugs. This volume addresses advances in a broad range of disciplines and is an excellent resource for basic researchers and applied investigators in pharmaceutical laboratories and in such fields as biochemistry and molecular biology.
Originally published by John Wiley and Sons in 1983, Partial Differential Equations for Scientists and Engineers was reprinted by Dover in 1993. Written for advanced undergraduates in mathematics, the widely used and extremely successful text covers diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Dover's 1993 edition, which contains answers to selected problems, is now supplemented by this complete solutions manual.
Students and puzzle enthusiasts will get plenty of enjoyment plus some painless mathematical instruction from 28 conundrums, including The Curve That Shook the World, Space Travel in a Wineglass, and Through Cantor's Looking Glass.
Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.
Practical text shows how to formulate and solve partial differential equations. Coverage includes diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Solution guide available upon request. 1982 edition.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.