A general method producing Hereditarily Indecomposable (H I) Banach spaces is provided. We apply this method to construct a nonseparable H I Banach space $Y$. This space is the dual, as well as the second dual, of a separable H I Banach space.
A general method producing Hereditarily Indecomposable (H.I.) Banach spaces is provided. We apply this method to construct a nonseparable H.I. Banach space $Y$. This space is the dual, as well as the second dual, of a separable H.I. Banach space. Moreover the space of bounded linear operators ${\mathcal{L}}Y$ consists of elements of the form $\lambda I+W$ where $W$ is a weakly compact operator and hence it has separable range. Another consequence of the exhibited method is the proof of the complete dichotomy for quotients of H.I. Banach spaces. Namely we show that every separable Banach space $Z$ not containing an isomorphic copy of $\ell^1$ is a quotient of a separable H.I. space $X$. Furthermore the isomorph of $Z^*$ into $X^*$, defined by the conjugate operator of the quotient map, is a complemented subspace of $X^*$.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.