Instrumental techniques for analyzing intrinsically disordered proteins The recently recognized phenomenon of protein intrinsic disorder is gaining significant interest among researchers, especially as the number of proteins and protein domains that have been shown to be intrinsically disordered rapidly grows. The first reference to tackle this little-documented area, Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation provides researchers with a much-needed, comprehensive summary of recent achievements in the methods for structural characterization of intrinsically disordered proteins (IDPs). Chapters discuss: Assessment of IDPs in the living cell Spectroscopic techniques for the analysis of IDPs, including NMR and EPR spectroscopies, FTIR, circular dichroism, fluorescence spectroscopy, vibrational methods, and single-molecule analysis Single-molecule techniques applied to the study of IDPs Assessment of IDP size and shape Tools for the analysis of IDP conformational stability Mass spectrometry Approaches for expression and purification of IDPs With contributions from an international selection of leading researchers, Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation fills an important need in a rapidly growing field. It is required reading for biochemists, biophysicists, molecular biologists, geneticists, cell biologists, physiologists, and specialists in drug design and development, proteomics, and molecular medicine with an interest in proteins and peptides.
Measles virus possesses a non segmented, single stranded, negative sense RNA genome that is encapsidated by the nucleoprotein to form a helical nucleocapsid. This ribonucleoproteic complex is the substrate for both transcription and replication. The RNA-dependent RNA polymerase binds to the nucleocapsid template via its co-factor, the phosphoprotein. This book focuses on the main structural information available on the nucleoprotein, showing that it consists of a structured core (NCORE) and of an intrinsically disordered C-terminal domain (NTAIL). The functional implications of the disordered nature of NTAIL are discussed in light of the ability of disordered regions to establish interactions with multiple partners, thus leading to multiple biological effects. Indeed, beyond the phosphoprotein, NTAIL also interacts with cellular partners, including the major heat shock protein, hsp72, the interferon regulator factor 3, IRF3, and a yet unidentified cellular receptor referred to as NR. This book consists of two chapters devoted to the general functions of the nucleoprotein in transcription and replication and to a detailed overview of its structural properties, and of three chapters focused on the functional relevance of the interaction between NTAIL and its various intracellular and extracellular partners.
This book provides up-to-date information on experimental and computational characterization of the structural and functional properties of viral proteins, which are widely involved in regulatory and signaling processes. With chapters by leading research groups, it features current information on the structural and functional roles of intrinsic disorders in viral proteomes. It systematically addresses the measles, HIV, influenza, potato virus, forest virus, bovine virus, hepatitis, and rotavirus as well as viral genomics. After analyzing the unique features of each class of viral proteins, future directions for research and disease management are presented.
In both the popular imagination and among lawmakers and national security experts, there exists the belief that with sufficient motivation and material resources, states or terrorist groups can produce bioweapons easily, cheaply, and successfully. In Barriers to Bioweapons, Sonia Ben Ouagrham-Gormley challenges this perception by showing that bioweapons development is a difficult, protracted, and expensive endeavor, rarely achieving the expected results whatever the magnitude of investment. Her findings are based on extensive interviews she conducted with former U.S. and Soviet-era bioweapons scientists and on careful analysis of archival data and other historical documents related to various state and terrorist bioweapons programs.Bioweapons development relies on living organisms that are sensitive to their environment and handling conditions, and therefore behave unpredictably. These features place a greater premium on specialized knowledge. Ben Ouagrham-Gormley posits that lack of access to such intellectual capital constitutes the greatest barrier to the making of bioweapons. She integrates theories drawn from economics, the sociology of science, organization, and management with her empirical research. The resulting theoretical framework rests on the idea that the pace and success of a bioweapons development program can be measured by its ability to ensure the creation and transfer of scientific and technical knowledge. The specific organizational, managerial, social, political, and economic conditions necessary for success are difficult to achieve, particularly in covert programs where the need to prevent detection imposes managerial and organizational conditions that conflict with knowledge production.
This book provides up-to-date information on experimental and computational characterization of the structural and functional properties of viral proteins, which are widely involved in regulatory and signaling processes. With chapters by leading research groups, it features current information on the structural and functional roles of intrinsic disorders in viral proteomes. It systematically addresses the measles, HIV, influenza, potato virus, forest virus, bovine virus, hepatitis, and rotavirus as well as viral genomics. After analyzing the unique features of each class of viral proteins, future directions for research and disease management are presented.
Measles virus possesses a non segmented, single stranded, negative sense RNA genome that is encapsidated by the nucleoprotein to form a helical nucleocapsid. This ribonucleoproteic complex is the substrate for both transcription and replication. The RNA-dependent RNA polymerase binds to the nucleocapsid template via its co-factor, the phosphoprotein. This book focuses on the main structural information available on the nucleoprotein, showing that it consists of a structured core (NCORE) and of an intrinsically disordered C-terminal domain (NTAIL). The functional implications of the disordered nature of NTAIL are discussed in light of the ability of disordered regions to establish interactions with multiple partners, thus leading to multiple biological effects. Indeed, beyond the phosphoprotein, NTAIL also interacts with cellular partners, including the major heat shock protein, hsp72, the interferon regulator factor 3, IRF3, and a yet unidentified cellular receptor referred to as NR. This book consists of two chapters devoted to the general functions of the nucleoprotein in transcription and replication and to a detailed overview of its structural properties, and of three chapters focused on the functional relevance of the interaction between NTAIL and its various intracellular and extracellular partners.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.