This first part of this book deals with the boundary value problem with equivalued surfaces, while the second part is concerned with the mathematical model and method, including the numerical method, of the resistivity well-logging for the three-lateral well-logging.
This monograph is devoted to the global existence, uniqueness and asymptotic behaviour of smooth solutions to both initial value problems and initial boundary value problems for nonlinear parabolic equations and hyperbolic parabolic coupled systems. Most of the material is based on recent research carried out by the author and his collaborators. The book can be divided into two parts. In the first part, the results on decay of solutions to nonlinear parabolic equations and hyperbolic parabolic coupled systems are obtained, and a chapter is devoted to the global existence of small smooth solutions to fully nonlinear parabolic equations and quasilinear hyperbolic parabolic coupled systems. Applications of the results to nonlinear thermoelasticity and fluid dynamics are also shown. Some nonlinear parabolic equations and coupled systems arising from the study of phase transitions are investigated in the second part of the book. The global existence, uniqueness and asymptotic behaviour of smooth solutions with arbitrary initial data are obtained. The final chapter is further devoted to related topics: multiplicity of equilibria and the existence of a global attractor, inertial manifold and inertial set. A knowledge of partial differential equations and Sobolev spaces is assumed. As an aid to the reader, the related concepts and results are collected and the relevant references given in the first chapter. The work will be of interest to researchers and graduate students in pure and applied mathematics, mathematical physics and applied sciences.
Motivated by applications to control theory and to the theory of partial differential equations (PDE's), the authors examine the exponential stability and analyticity of C0-semigroups associated with various dissipative systems. They present a unique, systematic approach in which they prove exponential stability by combining a theory from semigroup theory with partial differential equation techniques, and use an analogous theorem with PDE techniques to prove analyticity. The result is a powerful but simple tool useful in determining whether these properties will preserve for a given dissipative system. The authors show that the exponential stability is preserved for all the mechanical systems considered in this book-linear, one-dimensional thermoelastic, viscoelastic and thermoviscoelastic systems, plus systems with shear or friction damping. However, readers also learn that this property does not hold true for linear three-dimensional systems without making assumptions on the domain and initial data, and that analyticity is a more sensitive property, not preserved even for some of the systems addressed in this study.
Nonlinear evolution equations arise in many fields of sciences including physics, mechanics, and material science. This book introduces some important methods for dealing with these equations and explains clearly and concisely a wide range of relevant theories and techniques. These include the semigroup method, the compactness and monotone operator methods, the monotone iterative method and invariant regions, the global existence and uniqueness theory for small initial data, and the asymptotic behavior of solutions and global attractors. Many of the results are published in book form for the first time. Bibliographic comments in each chapter provide the reader with references and further reading materials to enable further research and study.
This monograph is devoted to the global existence, uniqueness and asymptotic behaviour of smooth solutions to both initial value problems and initial boundary value problems for nonlinear parabolic equations and hyperbolic parabolic coupled systems. Most of the material is based on recent research carried out by the author and his collaborators. The book can be divided into two parts. In the first part, the results on decay of solutions to nonlinear parabolic equations and hyperbolic parabolic coupled systems are obtained, and a chapter is devoted to the global existence of small smooth solutions to fully nonlinear parabolic equations and quasilinear hyperbolic parabolic coupled systems. Applications of the results to nonlinear thermoelasticity and fluid dynamics are also shown. Some nonlinear parabolic equations and coupled systems arising from the study of phase transitions are investigated in the second part of the book. The global existence, uniqueness and asymptotic behaviour of smooth solutions with arbitrary initial data are obtained. The final chapter is further devoted to related topics: multiplicity of equilibria and the existence of a global attractor, inertial manifold and inertial set. A knowledge of partial differential equations and Sobolev spaces is assumed. As an aid to the reader, the related concepts and results are collected and the relevant references given in the first chapter. The work will be of interest to researchers and graduate students in pure and applied mathematics, mathematical physics and applied sciences.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.