Electric Field Analysis is both a student-friendly textbook and a valuable tool for engineers and physicists engaged in the design work of high-voltage insulation systems. The text begins by introducing the physical and mathematical fundamentals of electric fields, presenting problems from power and dielectric engineering to show how the theories are put into practice. The book then describes various techniques for electric field analysis and their significance in the validation of numerically computed results, as well as: Discusses finite difference, finite element, charge simulation, and surface charge simulation methods for the numerical computation of electric fields Provides case studies for electric field distribution in a cable termination, around a post insulator, in a condenser bushing, and around a gas-insulated substation (GIS) spacer Explores numerical field calculation for electric field optimization, demonstrating contour correction and examining the application of artificial neural networks Explains how high-voltage field optimization studies are carried out to meet the desired engineering needs Electric Field Analysis is accompanied by an easy-to-use yet comprehensive software for electric field computation. The software, along with a wealth of supporting content, is available for download with qualifying course adoption.
Recent Trends in the Condition Monitoring of Transformers reflects the current interest in replacing traditional techniques used in power transformer condition monitoring with non-invasive measures such as polarization/depolarization current measurement, recovery voltage measurement, frequency domain spectroscopy and frequency response analysis. The book stresses the importance of scrutinizing the condition of transformer insulation which may fail under present day conditions of intensive use with the resulting degradation of dielectric properties causing functional failure of the transformer. The text shows the reader how to overcome the key challenges facing today’s maintenance policies, namely: The selection of appropriate techniques for dealing with each type of failure process accounting for the needs of plant owners, plant users and wider society; and Cost-efficiency and durability of effect. Many of the failure-management methods presented rely on the fact that most failures give warning when they are imminent. These potential failures give rise to identifiable physical conditions and the novel approaches described detect them so that action can be taken to avoid degeneration into full-blown functional failure. This “on-condition” maintenance means that equipment can be left in service as long as a specified set of performance standards continue to be met, avoiding the costly downtime imposed by routine and perhaps unnecessary maintenance but without risking equally expensive failure. Recent Trends in the Condition Monitoring of Transformers will be of considerable interest to both academic researchers in power systems and to engineers working in the power generation and distribution industry showing how new and more efficient methods of fault diagnosis and condition management can increase transformer efficiency and cut costs.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.