Sir Geoffrey Ingram Taylor (1886-1975) was a physicist, mathematician and expert on fluid dynamics and wave theory. He is widely considered to be one of the greatest physical scientists of the twentieth century. Across these four volumes, published between the years 1958 and 1971, Batchelor has collected together almost 200 of Sir Geoffrey Ingram Taylor's papers. The papers of the first three volumes are grouped approximately by subject, with Volume IV collating a number of miscellaneous papers on the mechanics of fluids. Together, these volumes allow a thorough exploration of the breadth and diversity of Sir Taylor's interests within the field of fluid dynamics. At the end of Volume IV, Batchelor provides the reader with both a chronological list of the papers presented across all four volumes, and a list of Sir Geoffrey Taylor's other published articles, completing this truly invaluable research and reference work.
Sir Geoffrey Ingram Taylor (1886-1975) was a physicist, mathematician and expert on fluid dynamics and wave theory. He is widely considered to be one of the greatest physical scientists of the twentieth century. Across these four volumes, published between the years 1958 and 1971, Batchelor has collected together almost 200 of Sir Geoffrey Ingram Taylor's papers. The papers of the first three volumes are grouped approximately by subject, with Volume IV collating a number of miscellaneous papers on the mechanics of fluids. Together, these volumes allow a thorough exploration of the breadth and diversity of Sir Geoffrey Taylor's interests within the field of fluid dynamics. At the end of Volume IV, Batchelor provides the reader with both a chronological list of the papers presented across all four volumes, and a list of Sir Geoffrey Taylor's other published articles, completing this truly invaluable research and reference work.
Sir Geoffrey Ingram Taylor (1886-1975) was a physicist, mathematician and expert on fluid dynamics and wave theory. He is widely considered to be one of the greatest physical scientists of the twentieth century. Across these four volumes, published between the years 1958 and 1971, Batchelor has collected together almost 200 of Sir Geoffrey Ingram Taylor's papers. The papers of the first three volumes are grouped approximately by subject, with Volume IV collating a number of miscellaneous papers on the mechanics of fluids. Together, these volumes allow a thorough exploration of the breadth and diversity of Sir Geoffrey Taylor's interests within the field of fluid dynamics. At the end of Volume IV, Batchelor provides the reader with both a chronological list of the papers presented across all four volumes, and a list of Sir Geoffrey Taylor's other published articles, completing this truly invaluable research and reference work.
G. I. Taylor was one of the most distinguished physical scientists of the last century, using his deep insight and originality and mathematical skill to increase greatly our understanding of phenomena such as the turbulent flow of fluids. His interest in the science of fluid flow was not confined to theory; he was one of the early pioneers of aeronautics, and designed a new type of anchor, now widely used in small boats throughout the world, that came about through his passion for sailing. Taylor spent most of his working life in the Cavendish Laboratory in Cambridge, where he investigated the mechanics of fluid and solid materials; his discoveries and ideas have had application throughout mechanical, civil and chemical engineering, meteorology, oceanography and material science. He was also a noted research leader, and his group in Cambridge became one of the most productive centres for the study of fluid mechanics. How was Taylor able to be innovative in so many different ways? This interesting and unusual mix of science and biography, first published in 1996, helps us to answer that question.
G. I. Taylor was one of the most distinguished physical scientists of the last century, using his deep insight and originality and mathematical skill to increase greatly our understanding of phenomena such as the turbulent flow of fluids. His interest in the science of fluid flow was not confined to theory; he was one of the early pioneers of aeronautics, and designed a new type of anchor, now widely used in small boats throughout the world, that came about through his passion for sailing. Taylor spent most of his working life in the Cavendish Laboratory in Cambridge, where he investigated the mechanics of fluid and solid materials; his discoveries and ideas have had application throughout mechanical, civil and chemical engineering, meteorology, oceanography and material science. He was also a noted research leader, and his group in Cambridge became one of the most productive centres for the study of fluid mechanics. How was Taylor able to be innovative in so many different ways? This interesting and unusual mix of science and biography, first published in 1996, helps us to answer that question.
Stanley Hooker joined the Bristol Aeroplane Company in 1949 and tugged a rather reluctant company into the jet age, determined to give real competition to Rolls-Royce. So successful was he that in 1966 Rolls-Royce decided the best thing to do was to spend ?63.6 million and buy its rival. By this time there was scarcely a single modern British aero-engine for which Hooker had not been responsible.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.