This book highlights new methods and parametric algorithms for the digital coherent processing of signals in airborne radar systems located on air vehicles. Using the autoregressive (AR) model, it delivers more accurate danger assessments for flight in wind shear and atmospheric turbulence, while also suggesting how they could be implemented. Given its scope, the book is intended for technical experts whose work involves the development, production and operation of airborne radio-electronic systems.
This book presents the general theory and basic methods of linear and nonlinear stochastic systems (StS) i.e. dynamical systems described by stochastic finite- and infinite-dimensional differential, integral, integrodifferential, difference etc equations. The general StS theory is based on the equations for characteristic functions and functionals. The book outlines StS structural theory, including direct numerical methods, methods of normalization, equivalent linearization and parametrization of one- and multi-dimensional distributions, based on moments, quasimoments, semi-invariants and orthogonal expansions. Special attention is paid to methods based on canonical expansions and integral canonical representations. About 500 exercises and problems are provided. The authors also consider applications in mathematics and mechanics, physics and biology, control and information processing, operations research and finance.
This book is intended for those having only a moderate background in mathematics, who need to increase their mathematical knowledge for development in their areas of work and to read the related mathematical literature. The material covered, which includes practically all the information on functional analysis that may be necessary for those working in various areas of applications of mathematics, as well as the simplicity of presentation, differentiates this book from others. About 300 examples and more than 500 problems are provided to help readers understand and master the theories presented. The list of references enables readers to explore those topics in which they are interested, and gather further information about applications used as examples in the book. Applications: Probability Theory and Statistics, Signal and Image Processing, Systems Analysis and Design.
This book concentrates on the branching solutions of nonlinear operator equations and the theory of degenerate operator-differential equations especially applicable to algorithmic analysis and nonlinear PDE's in mechanics and mathematical physics. The authors expound the recent result on the generalized eigen-value problem, the perturbation method, Schmidt's pseudo-inversion for regularization of linear and nonlinear problems in the branching theory and group methods in bifurcation theory. The book covers regular iterative methods in a neighborhood of branch points and the theory of differential-operator equations with a non-invertible operator in the main expression is constructed. Various recent results on theorems of existence are given including asymptotic, approximate and group methods.
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions
This volume provides a comprehensive introduction to the modern theory of differential-operator and kinetic models including Vlasov-Maxwell, Fredholm, Lyapunov-Schmidt branching equations to name a few. This book will bridge the gap in the considerable body of existing academic literature on the analytical methods used in studies of complex behavior of differential-operator equations and kinetic models. This monograph will be of interest to mathematicians, physicists and engineers interested in the theory of such non-standard systems.
This book highlights new methods and parametric algorithms for the digital coherent processing of signals in airborne radar systems located on air vehicles. Using the autoregressive (AR) model, it delivers more accurate danger assessments for flight in wind shear and atmospheric turbulence, while also suggesting how they could be implemented. Given its scope, the book is intended for technical experts whose work involves the development, production and operation of airborne radio-electronic systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.