First published in 1999, This book aims to study international leasing, in which it mainly looks at leasing on an international scale; considering how we define leasing itself and in the context of the international financial world.
The gastrointestinal tract is a long, muscular tube responsible for the digestion of food, assimilation of nutrients and elimination of waste. This is achieved by secretion of digestive enzymes and absorption from the intestinal lumen, with different regions playing specific roles in the processing of specific nutrients. These regions come into play sequentially as ingested material is moved along the length of the GI tract by contractions of the muscle layers. In some regions like the oesophagus transit it rapid and measured in seconds while in others like the colon transit is measured in hours and even days, commensurate with the relative slow fermentation that takes place in the large bowel. An hierarchy of controls, neural and endocrine, serve to regulate the various cellular targets that exist in the gut wall. These include muscle cells for contraction and epithelial cells for secretion and absorption. However, there are complex interactions between these digestive mechanisms and other mechanisms that regulate blood flow, immune function, endocrine secretion and food intake. These ensure a fine balance between the ostensibly conflicting tasks of digestion and absorption and protection from potentially harmful ingested materials. They match assimilation of nutrients with hunger and satiety and they ensure that regions of the GI tract that are meters apart work together in a coordinated fashion to match these diverse functions to the digestive needs of the individual. This ebook will provide an overview of the neural mechanisms that control gastrointestinal function. Table of Contents: Neural Control of Gastrointestinal Function / Cells and Tissues / Enteric Nervous System / From Gut to CNS: Extrinsic Sensory Innervation / Sympathetic Innervation of the Gut / Parasympathetic Innervation of the Gut / Integration of Function / References
LANTHANIDE AND ACTINIDE CHEMISTRY Lanthanides and actinides, also known as “f elements,” are a group of metals which share certain important properties and aspects of electronic structure. They have a huge range of applications in the production of electronic devices, magnets, superconductors, fuel cells, sensors, and more. The cursory treatment of these important metals in most inorganic chemistry textbooks makes a book-length treatment essential. Since 2006, Lanthanide and Actinide Chemistry has met this need with a thorough, accessible overview. With in-depth accounts of the lanthanides, actinides, and transactinides, this book is ideal for both undergraduate and postgraduate students in inorganic chemistry or chemical engineering courses. Now updated to reflect groundbreaking recent research, this promises to continue as the essential introductory volume on the subject. Readers of the second edition of Lanthanide and Actinide Chemistry will also find: New and expanded subject areas including lanthanide enzymes, single-molecule magnets, luminescence and upconversion, organometallic and coordination chemistry; and many more. Up-to-date information on the myriad modern applications of f-elements Lists of objectives and learning goals at the start of each chapter Lanthanide and Actinide Chemistry is ideal for advanced undergraduates and graduate students in f-element chemistry, inorganic chemistry, or any related field. INORGANIC CHEMISTRY ADVANCED TEXTBOOK This series reflects the pivotal role of modern inorganic and physical chemistry in a whole range of emerging areas, such as materials chemistry, green chemistry and bioinorganic chemistry, as well as providing a solid grounding in established areas such as solid state chemistry, coordination chemistry, main group chemistry and physical inorganic chemistry.
This practical and evidence-based workbook offers a series of assessment, implementation and evaluation activities for professionals working in critical care contexts. Designed to improve the quality of care delivery, it looks both at collaboration between professionals and between patients and/or family members. Collaborative Practice in Critical Care Settings: identifies the issues relating to the "current state" of collaboration in critical care through a series of assessment activities; provides a series of interventional activities which can address shortfalls of collaboration previously identified; and offers advice on generating evidence for the effects of any interventions implemented. The activities presented in this book are based on extensive empirical research, ensuring this book takes into account the everyday work environment of professionals in critical care units. It is suitable for practitioners and educators, as well as patient safety leads and managers.
Recent developments in the field of carbon nanotube (CNT)-based wet-spun fibers are described in this chapter. Wet spinning essentially enables a wide variety of polymers to be spun into fibers. It has been used to produce composite fibers composed of polymers loaded with CNTs, and even fibers solely composed of CNTs. Fibers obtained by wet-spinning approaches contain highly aligned CNTs making the fibers suitable for use in a variety of textile, cable and composite applications. Exciting results have been achieved at the laboratory scale. Today it is critical to consider scale-up of production of such superfibers so that applications can be fully validated.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.